Study on the Short-Term Hemodynamic Effects of Experimental Cardiomyoplasty in Heart Failure Model

심부전 모델에서 실험적 심근성형술의 단기 혈역학적 효과에 관한 연구

  • Jeong, Yoon-Seop (Department of Thoracic and Cardiovascular Surgery, Soonchunhyang University Hospital) ;
  • Youm, Wook (Department of Thoracic and Cardiovascular Surgery, Soonchunhyang University Hospital) ;
  • Lee, Chang-Ha (Department of Thoracic and Cardiovascular Surgery, Sejong General Hospital) ;
  • Kim, Wook-Seong (Department of Thoracic and Cardiovascular Surgery, Sejong General Hospital) ;
  • Lee, Young-Tak (Department of Thoracic and Cardiovascular Surgery, Sejong General Hospital) ;
  • Kim, Won-Gon (Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital)
  • 정윤섭 (순천향대학교 흉부외과) ;
  • 염욱 (순천향대학교 흉부외과) ;
  • 이창하 (부천세종병원 흉부외과) ;
  • 김욱성 (부천세종병원 흉부외과) ;
  • 이영탁 (부천세종병원 흉부외과) ;
  • 김원곤 (서울대학교 흉부외과)
  • Published : 1999.03.01

Abstract

Background: To evaluate the short-term effect of dynamic cardiomyoplasty on circulatory function and detect the related factors that can affect it, experimental cardiomyoplasties were performed under the state of normal cardiac function and heart failure. Material and Method: A total of 10 mongrel dogs weighing 20 to 30kg were divided arbitrarily into two groups. Five dogs of group A underwent cardiomyoplasty with latissimus dorsi(LD) muscle mobilization followed by a 2-week vascular delay and 6-week muscle training. Then, hemodynamic studies were conducted. In group B, doxorubicin was given to 5 dogs in an IV dose of 1 mg/kg once a week for 8 weeks to induce chronic heart failure, and simultaneous muscle training was given for preconditioning during this period. Then, cardiomyoplasties were performed and hemodynamic studies were conducted immediately after these cardiomyoplasties in group B. Result: In group A, under the state of normal cardiac function, only mean right atrial pressure significantly increased with the pacer-on(p<0.05) and the left ventricular hemodynamic parameters did not change significantly. However, with pacer-on in group B, cardiac output(CO), rate of left ventricular pressure development(dp/dt), stroke volume(SV), and left ventricular stroke work(SW) increased by 16.7${\pm}$7.2%, 9.3${\pm}$3.2%, 16.8${\pm}$8.6%, and 23.1${\pm}$9.7%, respectively, whereas left ventricular end-diastole pressure(LVEDP) and mean pulmonary capillary wedge pressure(mPCWP) decreased by 32.1${\pm}$4.6% and 17.7${\pm}$9.1%, respectively(p<0.05). In group A, imipramine was infused at the rate of 7.5mg/kg/hour for 34${\pm}$2.6 minutes to induce acute heart failure, which resulted in the reduction of cardiac output by 17.5${\pm}$2.7%, systolic left ventricular pressure by 15.8${\pm}$2.5% and the elevation of left ventricular end-diastole pressure by 54.3${\pm}$15.2%(p<0.05). With pacer-on under this state of acute heart failu e, CO, dp/dt, SV, and SW increased by 4.5${\pm}$1.8% and 3.1${\pm}$1.1%, 5.7${\pm}$3.6%, and 6.9${\pm}$4.4%, respectively, whereas LVEDP decreased by 11.7${\pm}$4.7%(p<0.05). Comparing CO, dp/dt, SV, SW and LVEDP that changed significantly with pacer-on, both under the state of acute and chronic heart failure, augmentation widths of these left ventricular hemodynamic parameters were significantly larger under the state of chronic heart failure(group B) than acute heart failure(group A)(p<0.05). On gross inspection, variable degrees of adhesion and inflammation were present in all 5 dogs of group A, including 2 dogs that showed no muscle contraction. No adhesion and inflammation were, however, present in all 5 dogs of group B, which showed vivid muscle contractions. Considering these differences in gross findings along with the following premise that the acute heart failure state was not statistically different from the chronic one in terms of left ventricular parameters(p>0.05), the larger augmentation effect seen in group B is presumed to be mainly attributed to the viability and contractility of the LD muscle. Conclusion: These results indicate that the positive circulatory augmentation effect of cardiomyoplasty is apparent only under the state of heart failure and the preservation of muscle contractility is important to maximize this effect.

배경: 역동적 심근성형술에서 골격근 수축에 의한 단기 혈역학적 변화를 관찰하고 이에 미치는 인자를 분석하고자 하였다. 대상 및 방법: 이를 위해 20-30kg 사이의 한국산 잡견 10마리를 두 그룹으로 나눠 심장 상태를 정상과 심부전 상태로 구분하였고 골격근 상태도 활성도 및 수축력의 차이가 나도록 구분하였다. 그룹 A에서는 5마리의 정상 심장상태의 실험견에 심근성형술을 시행한 뒤 8주후 혈역학 검사를 실시하였고, 그룹 B에서는 5마리의 실험견에 8주동안 매주 1 mg/kg의 doxorubicin을 주입하여 만성 심부전 상태를 만들면서 동시에 좌측 광배근의 사전 조건화를 위한 근육훈련을 한후 심근성형술을 시행하고 바로 혈역학 검사를 실시하였다. 결과: 그룹 A의 정상 심장 상태에서 광배근 수축으로 평균 우심방 압력을 제외한 나머지 좌심실 혈역학 지수에는 유의한 변화가 없었다. 그룹 B에서는 광배근 수축으로 심박출량(cardiac output; CO)은 16.7$\pm$7.2%, 좌심실 압력발생 속도(positive pressure development rate of left ventricle; dp/dt)는 9.3$\pm$3.2%, 일회 심박출량(stroke volume; SV)은 16.8$\pm$8.6%, 좌심실 박출작업량(left ventricular stroke work; SW)은 23.1$\pm$9.7% 증가하였고, 좌심실 이완기말압(left ventricular end-diastole pressure; LVEDP)은 32.1$\pm$4.6%, 평균 폐동맥쐐기압(mean pulmonary capillary wedge pressure; mPCWP)은 17.7$\pm$9.1% 감소하였다(p<0.05). 그러나 그룹 A에서 imipramine을 7.5 mg/kg/hour의 속도로 34$\pm$2.6분 투여하여 CO이 17.5$\pm$2.7%, 좌심실 수축기압(left ventricular systolic pressure)이 15.8$\pm$2.5% 감소하고 LVEDP가 54.3$\pm$15.2% 증가한 일시적 급성 심부전 상태를 유도한 뒤(p<0.05), 이 상태에서 광배근을 자극하였더니 CO은 4.5$\pm$1.8%, dp/dt는 3.1$\pm$1.1%, SV는 5.7$\pm$3.6%, SW는 6.9$\pm$4.4% 증가하였고, LVEDP는 11.7$\pm$4.7% 감소하였다(p<0.05). 그룹 A의 급성 심부전 상태와 그룹 B의 만성 심부전 상태에서 모두 광배근 수축으로 변화한 CO, dp/dt, SV, SW, LVEDP 같은 좌심실 혈역학 지표들의 변화의 폭을 비교하면 그룹 B에서 그룹 A에서보다 더 컸다(p<0.05). 그룹 A에서 유도된 급성 심부전 상태와 그룹 B의 만성 심부전 상태가 CO, dp/dt, SV, SW, LVEDP 같은 좌심실 혈역학 지표들 면에서 통계학적으로 차이가 없고(p>0.05), 육안적으로 광배근을 관찰하였을 때 그룹 A에서는 광배근의 유착 및 염증소견이 모두에서 있었고 그중 2마리에서는 광배근의 수축을 목격할 수 없었던 반면, 그룹 B에서는 5마리 모두에서 광배근이 활발하게 수축하였다는 점을 함께 고려하면 그룹 B에서의 더 큰 증폭 효과가 광배근의 활성도 및 수축력의 차이로부터 기인한다고 평가할 수 있다. 결론: 이상에서 역동적 심근성형술의 수축기 혈역학적 변화는 심부전 상태에서만 긍정적인 개선 효과를 나타내며, 그 효과의 극대화를 위해서는 근육의 수축력을 유지하는 것이 매우 중요함을 알 수 있다.

Keywords

References

  1. Cardiac Chronicle v.6 Dynamic cardiomyoplasty : Efficacy and Mechanisms Chiu RC-J
  2. Lancet v.1 Myocardial substitution with a stimulated skeletal muscle: first successful clinical case Carpentier A;Chachques JC
  3. Semin Thorac Cardiovasc Surg v.3 Indications and risk analysis for clinical cardiomyoplasty Magovern JA;Furnary AP;Christlieb IY(et al)
  4. Skeletal muscle for cardiac repair and assist. A historical overview Walsh G;Chiu R, C-J;Chiu RC-J(ed)
  5. Surg Forum v.35 Transformation of skeletal muscle for cardiac replacement Armenti F;Bitto T;Macoviak JA(et al)
  6. Biomechanical cardiac assist Cardiomyoplasty and pulse-train stimulator Dewar ML;Chiu RC-J;Chiu RC-J(ed)
  7. J Card Surg v.6 no.SUP. Dynamic cardiomyoplasty : clinical follow-up results Grandjean PA;Austin L;Chan S(et al)
  8. J Thorac Cardiovasc Surg v.109 Clinical and left ventricular function outcomes up to five years after dynamic cardiomyoplasty Moreira LFP;Stolf NA;Bocchi EA(et al)
  9. Br Heart J v.73 Dynamic cardiomyoplasty for heart failure Chiu RC-J
  10. J Card Surg v.4 Cardiomyoplasty benefits in experimental myocardial dysfunction Moreira LFP;Chagas AC;Camarano GP(et al)
  11. J Thorac Cardiovasc Surg v.103 Effects of dynamic cardiomyoplasty on indices of left ventricular systolic and diastolic function in a canine model of chronic heart failure Cheng W;Justicz AG;Soberman MS(et al)
  12. Circulation v.90 Cardiomyoplasty. A critical review of experimental and clinical results El Oakley RM;Jarvis JC
  13. J Thorac Cardiovasc Surg v.103 Mechanical enhancement and myocardial oxygen saving by synchronized dynamic left ventricular compression Kawaguchi O;Goto Y;Futaki S(et al)
  14. Ann Thorac Surg v.56 Girdling effect of nonstimulated cardiomyoplasty on left ventricular function Capouya ER;Gerber RS;Drinkwater DC Jr.(et al)
  15. J Thorac Cardiovasc Surg v.102 Effects of dynamic cardiomyoplasty on left ventricular performance and myocardial mechanics in dilated cardiomyopathy Lee KF;Dignan R;Parmar JM(et al)
  16. Ann Thorac Surg v.64 Cardiac binding in experimental heart failure Vaynbalt M;Chiavarelli M;Shah H(et al)
  17. Circulation v.74 Rapid ventricular pacing in the dog: Pathophysiologic studies of heart failure Amstrong PW;Stopps TP;Ford SE(et al)
  18. Ann Thorac Surg v.52 Experimental model of left ventricular failure Millner RW;Mann JM;Pearson I(et al)
  19. J Heart Lung Transplant v.11 Evaluation of cardiomyoplasty and skeletal muscle ventricle procedures in a clinically realistic animal model Kern KB;Fenster PE
  20. Circulation v.78 no.III Effect of latissimus dorsi dynamic cardiomyoplasty on ventricular function Chachques JC;Grandjean P;Schwartz K(et al)
  21. J Am Coll Cardiol v.22 Long-term follow-up (12 to 35 weeks) after dynamic cardiomyoplasty Lucas CM;Van der Veen FH;Cheriex EC(et al)
  22. Scand J Thorac Cardiovasc Surg v.26 Experimental dynamic cardiomyoplasty in sheep Thelin S;Vedung S;Nylund U(et al)
  23. Circulation v.80 no.III Stimulated preconditioned skeletal muscle cardiomyoplasty. An effective means of cardiac assist Chagas AC;Moreira LFP;da Luz PL(et al)
  24. J Thorac Cardiovasc Surg v.99 The importance of skeletal muscle fiber orientation for dynamic cardiomyoplasty Kao RL;Christlieb IY;Magovern GJ;(et al)
  25. Cardiovasc Res v.26 Imipramine induced heart failure in the dog: a model to study the effect of cardiac assist devices Lucas CM;Cheriex EC;van der Veen FH(et al)
  26. Ann Thorac Surg v.53 Right latissimus dorsi cardiomyoplasty for left ventricular failure Magovern JA;Furnary AP;Christlieb IY(et al)
  27. Ann Thorac Surg v.53 A model of left ventricular dysfunction caused by intracoronary Adriamycin Magovern JA;Christlieb IY;Badylak SF(et al)
  28. Ann Thorac Surg v.55 Dynamic cardiomyoplasty in chronic left ventricular failure: an experimental model Millner RW;Burrows M;Pearson I(et al)
  29. Cardiac Chronicle v.4 Cardiomyoplasty : the basic issues Salmons S;Jarvis JC