• 제목/요약/키워드: 암시적 피드백 데이터

검색결과 9건 처리시간 0.024초

앙상블 SVM을 이용한 동적 웹 정보 예측 시스템 (Dynamic Web Information Predictive System Using Ensemble Support Vector Machine)

  • 박창희;윤경배
    • 정보처리학회논문지B
    • /
    • 제11B권4호
    • /
    • pp.465-470
    • /
    • 2004
  • 기존의 웹 정보 예측 시스템은 예측에 필요한 정보를 얻기 위하여 사용자 프로파일과 사용자로부터의 명시적 피드백 정보를 필요로 하는 단점이 존재한다. 본 논문에서는 이러한 단점을 극복하고자 웹 사이트에 접속한 고객의 행동을 나타내는 클릭 스트림 데이터와 이를 기반으로 한 사용자의 암시적 피드백 정보를 이용하여 각 사용자가 가장 필요로 하는 웹 정보를 예측한다. 이를 이용하여 관련 정보를 제공할 수 있는 앙상블 SVM을 이용한 동적 웹 정보 예측 시스템을 설계하고 구현하며, 기존의 웹 정보 예측 시스템과 성능 비교를 수행한 결과, 제안된 방법의 우수함이 입증되었다.

명시적 및 암시적 피드백을 활용한 그래프 컨볼루션 네트워크 기반 추천 시스템 개발 (Developing a Graph Convolutional Network-based Recommender System Using Explicit and Implicit Feedback)

  • 이흠철;김동언;이청용;김재경
    • 한국IT서비스학회지
    • /
    • 제22권1호
    • /
    • pp.43-56
    • /
    • 2023
  • With the development of the e-commerce market, various types of products continue to be released. However, customers face an information overload problem in purchasing decision-making. Therefore, personalized recommendations have become an essential service in providing personalized products to customers. Recently, many studies on GCN-based recommender systems have been actively conducted. Such a methodology can address the limitation in disabling to effectively reflect the interaction between customer and product in the embedding process. However, previous studies mainly use implicit feedback data to conduct experiments. Although implicit feedback data improves the data scarcity problem, it cannot represent customers' preferences for specific products. Therefore, this study proposed a novel model combining explicit and implicit feedback to address such a limitation. This study treats the average ratings of customers and products as the features of customers and products and converts them into a high-dimensional feature vector. Then, this study combines ID embedding vectors and feature vectors in the embedding layer to learn the customer-product interaction effectively. To evaluate recommendation performance, this study used the MovieLens dataset to conduct various experiments. Experimental results showed the proposed model outperforms the state-of-the-art. Therefore, the proposed model in this study can provide an enhanced recommendation service for customers to address the information overload problem.

암시적 피드백 데이터의 행렬 분해 기반 누락 데이터 모델링 (Missing Data Modeling based on Matrix Factorization of Implicit Feedback Dataset)

  • 기가기;정영지
    • 한국정보통신학회논문지
    • /
    • 제23권5호
    • /
    • pp.495-507
    • /
    • 2019
  • 데이터 희소성은 추천 시스템의 주요 과제 중 하나이다. 추천 시스템에서는, 일부분만 관찰된 데이터이고 다른 부분은 데이터가 누락된 대용량 데이터를 포함하고 있다. 대부분의 연구에서는, 데이터 세트에서 무작위로 데이터가 누락되었다고 가정하고, 관찰된 데이터만을 사용하여 추천 모델을 학습함으로써 사용자에게 항목을 추천하고 있다. 그러나, 실제로는 누락된 데이터는 무작위로 손실되었다고 볼 수 없다. 본 연구에서는, 누락 된 데이터를 사용자적 관심의 부정적인 예라고 간주하였다. 또한, 3가지 샘플 접근 방식을 SVD++ 알고리즘과 결합하여 SVD++_W, SVD++_R 그리고 SVD++_KNN 알고리즘을 제안하였다. 실험결과를 통하여, 제안한 3가지 샘플 접근 방식이 기존의 기본적인 알고리즘 보다 Top-N 추천에서 정확성과 회수율을 효과적으로 향상시킬 수 있다는 것을 보였다. 특히, SVD++_KNN 가 가장 우수한 성능을 보였는데, 이는 KNN 샘플 접근 방식이 사용자적 관심의 부정적인 예를 추출하는데 가장 효율적인 방법이라는 것을 보여주었다.

온라인 쇼핑몰 환경에서 사용자 행동 데이터의 상관관계 분석 기반 추천 시스템 (Recommendation System Based on Correlation Analysis of User Behavior Data in Online Shopping Mall Environment)

  • 박요한;문종혁;최종선;최재영
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제13권1호
    • /
    • pp.10-20
    • /
    • 2024
  • 매년 증가하는 온라인 상거래 시장과, 점차 다양해지는 상품과 콘텐츠로 인해 사용자들은 선택 과정에 어려움을 느낀다. 이에 여러 기업들은 온라인 쇼핑몰에서 사용자가 선호할 상품을 선별하여 제공하기 위해 추천 시스템에 대한 지속적인 연구를 진행하고 있다. 대다수의 추천 시스템 연구에서는 비교적 획득하기 쉬운 사용자의 이벤트 데이터를 기반하여 연구를 진행하였으나 한 종류의 사용자 행동만을 고려하기 때문에 사용자의 선호도를 파악하는 것에 오차가 발생한다. 이에 본 논문에서는 여러 종류의 사용자 행동 데이터의 상관관계를 고려하여 사용자의 선호도를 분석하는 추천 시스템을 제안한다. 제안하는 추천 시스템은 사용자의 사용자 행동 데이터의 상관관계를 분석하고 가중치를 생성하여 추천 모델을 학습한다. 실험에서는 기존 연구의 알고리즘과의 성능 비교를 통해 제안하는 시스템의 복잡도와 성능 향상을 확인하였다.

장소 추천을 위한 방문 간격 보정 (Temporal Interval Refinement for Point-of-Interest Recommendation)

  • 김민석;이재길
    • 데이타베이스연구회지:데이타베이스연구
    • /
    • 제34권3호
    • /
    • pp.86-98
    • /
    • 2018
  • 장소추천시스템은 시간과 장소가 주어졌을 때, 사용자에게 가장 흥미로운 장소를 추천해주는 시스템을 말한다. 스마트폰과 사물인터넷(IoT), 장소기반 소셜네트워크(LBSN)의 발달에 힘입어 사용자들의 방대한 양의 장소 방문 데이터를 축적하게 되었고, 이를 통해 특정한 시점에 사용자들이 원하는 장소를 적절히 추천해줄 수 있는 장소추천시스템의 중요성이 부각되었다. 장소추천시스템은 사용자의 방문(Check-in) 횟수라는 암시적 피드백(Implicit feedback) 데이터에서 사용자의 시퀀스 선호(Sequential preference)를 이끌어내어 높은 성능을 내기 위한 연구들이 제안되었다. 하지만 시퀀스 선호 정보를 활용하여 모델을 구성하는 경우, 데이터의 밀도가 더욱 희박해지고 이에 따라 적은 수의 데이터에 기반하여 구축되는 모델의 성능이 왜곡될 가능성이 존재한다. 본 연구에서는 신뢰도(Confidence)에 기반하여 방문 주기를 보정하는 방법론을 제안한다. 사용자의 시퀀스 선호 정보로부터 도출된 장소 간 방문 시간전이간격(temporal transition interval)을 활용하여 추천시스템을 구성할 때, 해당 방법론을 통하여 데이터의 왜곡을 보정함으로써 추천시스템의 성능을 향상하였다. 제안하는 방법의 효과를 검증하기 위하여, Foursquare와 Gowalla의 데이터셋을 이용한 비교실험을 통해 제안하는 방법론의 우수성을 보였다.

시스템 사고를 활용한 인공지능 교육과 메이커 교육 융합 효과성 예측 (Predicting the Effect of Fusion of Artificial Intelligence Education and Maker Education Using System Dynamics)

  • 양환근;이태욱
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제61차 동계학술대회논문집 28권1호
    • /
    • pp.117-120
    • /
    • 2020
  • 본 논문은 인공지능 메이커 교육과 관련한 요소를 논문 네트워크 키워드 분석과 다양한 빅데이터를 종합하여 핵심용어를 선정 후 인공지능 메이커 교육을 시스템 다이내믹스의 Vensim프로그램으로 인과지도(Casual Loop Diagramming)를 구조분석(모델의 구조)하여 예측 결과를 토대로 향후 미래 상황 추출 및 정책 결정 연구에 영향을 기여한다. 연구 결과 인공지능 교육 정책은 추후 인공지능 교육과 메이커 교육을 융합한 교육 관련 산업이 증대할 것으로 예측되며 교육 경쟁력 향상과 창의적 인재 양성, OTT를 이용한 인공지능 교육 콘텐츠 향상으로 학습에 활용성이 증대하게 된다. 또한 인공지능 교육 정책은 프로그래밍 교육으로 연결되어 성장기 학습자들의 사고력과 정서 발달에 도움 되며 다양한 교재 및 기기 등장으로 인한 학습에 다양성 역시 증가할 것으로 예측된다. 학교 차원에서는 교수·연구 지원 활동이 증가하여 수업 전문성을 가진 교사가 늘어나 학교 교육의 질은 확대되고 학부모는 인공지능 교육 정책에 긍정적으로 된다. 시스템 다이내믹스는 구조가 형태를 결정짓는다는 세계관에 기초하여 피드백 루프와 동태적 형태 유형을 파악하며 다양한 가능성이 존재하게 된다. 이는 추후 다양한 연구를 통해 인공지능 교육 정책 인과지도의 확대로 연결될 수 있음을 암시하며 본 논문을 통해 인공지능 교육 연구 확산에 시발점이 되었으면 한다.

  • PDF

네트워크 분석을 활용한 딥러닝 기반 전공과목 추천 시스템 (Major Class Recommendation System based on Deep learning using Network Analysis)

  • 이재규;박희성;김우주
    • 지능정보연구
    • /
    • 제27권3호
    • /
    • pp.95-112
    • /
    • 2021
  • 대학 교육에 있어서 전공과목의 선택은 학생들의 진로에 중요한 역할을 한다. 하지만, 산업의 변화에 발맞춰 대학 교육도 학과별 전공과목의 분야가 다양해지고 그 수가 많아지고 있다. 이에 학생들은 본인의 진로에 맞게 수업을 선택하여 수강하는 것에 어려움을 겪고 있다. 본 연구는 대학 전공과목 추천 모델을 제시함으로써 개인 맞춤형 교육을 실현하고 학생들의 교육만족도를 제고하고자 한다. 모델 연구에는 대학교 학부생들의 2015년~2017년 수강 이력 데이터를 활용하였으며, 메타데이터로는 학생과 수업의 전공 명을 사용했다. 수강 이력 데이터는 컨텐츠 소비 여부만을 나타낸 암시적 피드백 데이터로, 수업에 대한 선호도를 반영한 것이 아니다. 따라서 학생과 수업의 특성을 나타내는 임베딩 벡터를 도출했을 시, 표현력이 낮다. 본 연구는 이러한 문제점에 착안하여, 네트워크 분석을 통해 학생, 수업의 벡터를 생성하고 이를 모델의 입력 값으로 활용하는 Net-NeuMF 모델을 제시한다. 모델은 암시적 피드백을 가진 데이터를 이용한 대표적인 모델인 원핫 벡터를 이용하는 NeuMF의 구조를 기반으로 하였다. 모델의 입력 벡터는 네트워크 분석을 통해 학생과 수업의 특성을 나타낼 수 있도록 생성하였다. 학생을 표현하는 벡터를 생성하기 위해, 각 학생을 노드로 설정하고 엣지는 두 학생이 같은 수업을 수강한 경우 가중치를 가지고 연결되도록 설계했다. 마찬가지로 수업을 표현하는 벡터를 생성하기 위해 각 수업을 노드로 설정하고 엣지는 공통으로 수강한 학생이 있는 경우 연결시켰다. 이에 각 노드의 특성을 수치화 하는 표현 학습방법론인 Node2Vec을 이용하였다. 모델의 평가를 위해 추천 시스템에서 주로 활용하는 지표 4가지를 사용하였고, 임베딩 차원이 모델에 미치는 영향을 분석하기 위해 3가지 다른 차원에 대한 실험을 진행하였다. 그 결과 기존 NeuMF 구조에서 원-핫 벡터를 이용하였을 때보다 차원과 관계없이 평가지표에서 좋은 성능을 보였다. 이에 본 연구는 학생(사용자)와 수업(아이템)의 네트워크를 이용해 기존 원-핫 임베딩 보다 표현력을 높였다는 점, 모델을 구성하는 각 구조의 특성에 맞도록 임베딩 벡터를 활용하였다는 점, 그리고 기존의 방법론에 비해 다양한 종류의 평가지표에서 좋은 성능을 보였다는 점을 기여점으로 가지고 있다.

무선인터넷 환경에서의 개인화상품추천에이전트 (A Personalized Product Recommendation Agent on Mobile Internet)

  • 이승화;이은석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.145-147
    • /
    • 2004
  • 본 논문에서는 무선인터넷 환경에 적합한 개인화된 상품추천에이전트를 제안한다. 기존에 유선인터넷상의 많은 개인화 추천시스템에서는 초기 사용자 모델링을 위해 사용자에게 수많은 질의를 하고 응답을 요구하였다. 그러나 이러한 방식은 무선인터넷 환경에서 정보 전송량에 따른 높은 사용요금을 고려할 때 적용하기 힘든 방식이다. 본 제안 시스템은 사용자의 Social data률 이용하여 사용자를 비슷한 연령과 성별 그룹으로 나누고, 해당 그룹에서 구매율이 높은 상품을 우선 제시한 후, 사용자 행동을 모니터링 하여 암시적(Implicit)피드백을 통해 프로파일을 생성함으로써, 번거로운 질의-응답 과정 없이도 초기 사용자 모델링을 수행할 수 있다. 프로파일 생성 이후에는 이를 기반으로 하여 사용자몰 유사한 취향을 가진 그룹으로 다시 군집화한 후 협력적 추천을 하게 되며, 프로파일에는 해당 상품의 최종 카테고리명과 키워드를 수집함으로써, 상품의 브랜드와 규격정보를 반영한 추천이 가능하다. 또한 추천 상품과 사용자의 구매데이터와의 비교를 수행하여 사용자가 해당상품을 구매하였을 경우, 상품에 대한 취향정보는 그대로 유지하고 관련 상품을 추천하되, 구매한 상품이 중복 추천되지 않도록 하였다. 시스템 평가를 위해 프로토타입을 구현하여, 다수의 사용자에게 시스템을 이용하며 관심품목을 체크하도록 하였고. 추천횟수가 반복되며 히트율이 증가하는 결과를 통해 시스템의 학습속도와 성능을 평가하였다. 그리고 쇼핌몰에서 구매경험이 있는 사용자의 기존 구매데이터와 Social data를 이용한 초기 제시상품을 역으로 비교하여 오랜 시간과 비용 발생 없이도 초기 프로파일 생성의 유효성을 증명하였다. 포함하는 XML 질의에 대해서도 웹에서 캐쉬를 이용한 처리가 효율적임을 확인하였다.키는데 목적이 있다.RED에 비해 향상된 성능을 보여주었다.웍스 네트워크상의 다양한 디바이스들간의 네트워크 다양화와 분산화 기능을 얻을 수 있었고, 기존의 고가의 해외 솔루션인 Echelon사의 LonMaker 소프트웨어를 사용하지 않고도 국내의 순수 솔루션인 리눅스 기반의 LonWare 3.0 다중 바인딩 기능을 통해 저 비용으로 홈 네트워크 구성 관리 서버 시스템 개발에 대한 비용을 줄일 수 있다. 기대된다.e 함량이 대체로 높게 나타났다. 점미가 수가용성분에서 goucose대비 용출함량이 고르게 나타나는 경향을 보였고 흑미는 알칼리가용분에서 glucose가 상당량(0.68%) 포함되고 있음을 보여주었고 arabinose(0.68%), xylose(0.05%)도 다른 종류에 비해서 다량 함유한 것으로 나타났다. 흑미는 총식이섬유 함량이 높고 pectic substances, hemicellulose, uronic acid 함량이 높아서 콜레스테롤 저하 등의 효과가 기대되며 고섬유식품으로서 조리 특성 연구가 필요한 것으로 사료된다.리하였다. 얻어진 소견(所見)은 다음과 같았다. 1. 모년령(母年齡), 임신회수(姙娠回數), 임신기간(姙娠其間), 출산시체중등(出産時體重等)의 제요인(諸要因)은 주산기사망(周産基死亡)에 대(對)하여 통계적(統計的)으로 유의(有意)한 영향을 미치고 있어 $25{\sim}29$세(歲)의 연령군에서, 2번째 임신과 2번째의 출산에서 그리고 만삭의 임신 기간에, 출산시체중(出産時體重) $3.50{\sim}3.99kg$사이의 아

  • PDF

RFM 다차원 분석 기법을 활용한 암시적 사용자 피드백 기반 협업 필터링 개선 연구 (A Study on Improvement of Collaborative Filtering Based on Implicit User Feedback Using RFM Multidimensional Analysis)

  • 이재성;김재영;강병욱
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.139-161
    • /
    • 2019
  • 전자상거래 시장의 이용이 보편화 되며 고객들에게 좋은 품질의 물건을 어디서, 얼마나 합리적으로 구매할 수 있는지가 중요해졌다. 이러한 구매 심리의 변화는 방대한 정보 속에서 오히려 고객들의 구매 의사결정을 어렵게 만드는 경향이 있다. 이때 추천 시스템은 고객의 구매 행동을 분석하여 정보 검색에 드는 비용을 줄이고 만족도를 높이는 효과가 있다. 하지만 대부분 추천 시스템은 책이나 영화 등 동종 상품 분류 내에서만 추천이 이뤄진다. 왜냐하면 추천 시스템은 특정 상품에 매긴 구매 평점 데이터를 기반으로 해당 상품 분류 내 유사한 상품에 대한 구매 만족도를 추정하기 때문이다. 그밖에 추천 시스템에서 사용하는 구매 평점의 신뢰성에 대한 문제도 제시되고 있으며 오프라인에선 평점 확보 자체가 어렵다. 이에 본 연구에서는 일련의 문제를 개선하기 위해 RFM 다차원 분석 기법을 활용하여 기존에 사용하던 고객의 구매 평점을 객관적으로 대체할 수 있는 새로운 지표의 활용 가능성을 제안하는 바이다. 실제 기업의 구매 이력 데이터에 해당 지표를 적용해서 검증해본 결과 높게는 약 55%에 해당하는 정확도를 기록했다. 이는 총 4,386종에 달하는 이종 상품들 중 한번도 이용해 본 적 없는 상품을 추천한 결과이기 때문에 검증 결과는 상대적으로 높은 정확도와 활용가치를 의미한다. 그리고 본 연구는 오프라인의 다양한 상품데이터에서도 적용할 수 있는 범용적인 추천 시스템의 가능성을 시사한다. 향후 추가적인 데이터를 확보한다면 제안하는 추천 시스템의 정확도 향상도 기대할 수 있다.