• Title/Summary/Keyword: 암석코어

Search Result 80, Processing Time 0.028 seconds

A Suggested Method for Predicting Permeability of Porous Sandstone Using Porosity and Drying Rate (공극률과 건조율을 이용한 다공질 사암의 투과도 추정방법 제안)

  • Ko, Eunji;Kim, Jinhoo
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.3
    • /
    • pp.121-128
    • /
    • 2014
  • As the permeability is an important parameter to characterize the ease with which a porous medium transmits fluids, it is usually obtained by fluid flow experiment using core samples. In order to measure the permeability, however, an experimental apparatus is required and it might take long measurement time, especially for tight samples. In this study, the relationship between permeability and porosity as well as drying rate has been investigated to predict the permeability without a series of measuring experiments. Porosity is measured by drying monitoring method, which measures weight variation continuously while drying surface-dried saturated sample, and drying rate is obtained from weight variation ratio with respect to the water saturation. The total of 6 Berea sandstone samples, which have a permeability range of 70 to 670 mD, were used in this work, and a new and empirical equation which could predict permeability of porous sandstone by using porosity and drying rate were obtained through regression analysis.

Study on the Geotechnical Characteristics of Granite in Korea and their Correlation with Rock Classification Method (국내 화강암의 지반공학적 특성 및 암반분류법과의 상관성에 관한 연구)

  • SunWoo, Choon;Ryu, Dong-Woo;Kim, Hyung-Mok;Kim, Ki-Seog
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.205-215
    • /
    • 2011
  • In this study, we analyzed physical properties of granites and their correlation with rock mass classification methods. The granite samples were obtained from field survey, in-situ borehole tests and laboratory tests for a design phase of various roads, railways and other civil engineering works in Korea. Among the measured physical properties, the results of unit weight, compressive strength, tensile strength, seismic velocity, cohesion, friction angle, elastic modulus and deformation modulus were introduced. We also correlated these properties with the compressive strength. The results of different rock classification method of RQD, RMR, and Q-system against the granites in Korea were compared with each other, and the correlation equations were proposed in a more simplified form. We also derived RMR values using the compressive strength as well as the RQD values of in-situ drilled cores, and estimated the deformation modulus of in-situ rock mass in terms of the RMR values.

Statistical analysis of NTNU test results to predict rock TBM performance (TBM 굴진성능 예측을 위한 NTNU 시험결과의 분석)

  • Choi, Soon-Wook;Chang, Soo-Ho;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.3
    • /
    • pp.243-260
    • /
    • 2011
  • To predict TBM performance in design stage is indispensable for its successful application. The NTNU model, one of the representative TBM performance prediction models uses two distinct parameters such as DRI and CLI obtained from three different tests on bored rock cores. Based on DRI and CLI, it is possible to predict TBM advance rate and cutter life in the NTNU model. In this study, NTNU testing methods and their related testing equipments were introduced to measure DRl and CLI for the NTNU model. Then, in order to derive their relationships, the two key parameters measured for 39 domestic rocks were compared with physico-mechanical properties of rock such as uniaxial compressive strength and quartz content. Lastly, the experimental results were also compared with NTNU database to verify their reliability.

지표수와 지하수에서의 희토류원소 분포도의 시간적-공간적 변화의 지구화학적 의의: Eu 이상의 변화에 대한 분석화학적/지구화학적 고찰

  • Lee Seung-Gu;Choi Beom-Gyu;Yu Jae-Yeong;Yeom Byeong-U;Kim Yong-Je
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.266-269
    • /
    • 2006
  • 지하수, 해수 혹은 지표수의 희토류원소의 분포도에 있어서 Eu과 Ce은 산화수의 변화에 따라 다른 희토류원소로터 벗어나게 되고, 이로이해 Eu과 Ce의 이상이 발생된다. 지표수와 지하수의 연계성을 밝혀내기 위해 희토류원소를 이용하여 전주-완주지역에서의 지표수와 지하수시료를 2002년부터 2004년까지 6차례에 걸쳐 채취하였다. 이중 2003년 8월까지의 시료는 2개기관에서 각각 희토류원소 함량을 측정하였다. 또한 대수층 구성암석과의 상관성을 밝혀내기 위해 동일한 지역에서 코어시료를 채취하였다. PAAS(Post Archean Australian Shale)로 규격화한 희토류 원소분포도에 의하면, 갈수기인 2002년 4월과 2003년 11월의 지표수와 지하수는 대체적으로 중희토류가 부화되었고, 아울러 강한 Eu의 정(+)의 이상과 Ce의 부(-)의 이상을 보여주었다. 그러나 갈수기가 끝난 2003년 6월과 장마가 끝난 직후인 2003년 8월의 시료에서는 대부분의 지표수와 지하수 시료가 Eu의 강한 부(-)의 이상을 보여주었다. 그리고 일부 시료에서는 Ce의 부(-)의 이상도 관찰되었다. 이와 같은 Ce과 Eu의 변화는 산화-환원작용의 영향을 받은 산화수(즉 Ce3+와 Ce4+, Eu2+와 Eu3+)의 변화에 의한 것으로 해석할 수가 있다. 뿐만 아니라, 본 연구결과에 의하면, 전주-완주 지역에서의 지표수와 지하수는 매우 밀접한 연관성을 갖고 있으며, 그 순환속도 또한 비교적 빠른 편으로 나타났다. 그리고 본 연구결과, 희토류원소는 지표수와 지하수의 연계성을 밝혀내는 데 있으며 매우 유용한 지시자임을 확인하였다.

  • PDF

Empirical model to estimate the thermal conductivity of granite with various water contents (다양한 함수비를 가진 화강암의 열전도도 추정을 위한 실험적 모델)

  • Cho, Won-Jin;Kwon, Sang-Ki;Lee, Jae-Owan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.2
    • /
    • pp.135-142
    • /
    • 2010
  • To obtain the input data for the design and long-term performance assessment of a high-level waste repository, the thermal conductivities of several granite rocks which were taken from the rock cores from the declined borehole were measured. The thermal conductivities of granite were measured under the different conditions of water content to investigate the effects of the water content on the thermal conductivity. A simple empirical correlation was proposed to predict the thermal conductivity of granite as a function of effective porosity and water content which can be measured with relative ease while neglecting the possible effects of mineralogy, structure and anisotropy. The correlation could predict the thermal conductivity of granite with the effective porosity below 2.7% from the KURT site with an estimated error below 10%.

Thermal Conductivity of Dry and Saturated Cores from Ulleung Island in a Constant Temperature and Humidity Condition (항온항습 환경에서 울릉도 시추코어의 건조·수포화 열전도도)

  • Lee, Keun-Soo;Lee, Sang Kyu;Lee, Tae Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.4
    • /
    • pp.220-230
    • /
    • 2018
  • When thermal conductivity of rock is measured with PEDB (Portable Electronic Divided Bar) in a laboratory, it can be greatly influenced by the change of room temperature. Therefore, measuring the thermal conductivity in a thermo-hygrostat is necessary, where it can remain in its constant temperature and humidity condition. In this study, a system for thermal conductivity measurement in a thermo-hygrostat has been set up and the thermal conductivities for the 45 samples collected from GH3 and GH4 boreholes in Ulleung Island have been measured both in dry and saturated conditions. Also, the correlations between those thermal conductivities, density, and effective porosity have been discussed. As a result of correlation analysis among the thermal conductivity, density, and effective porosity, it showed higher correlation with dry samples than saturated samples. Especially, thermal conductivity ratio between saturated and dry conditions shows very high correlation ($R^2=0.90$) with effective porosity.

Analysis of Effect of Surface Modified Silica Nanofluid Injection on Carbonate Rock (탄산염암 내 표면개질된 실리카 나노유체 주입 효과 분석)

  • Jang, Hochang
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.2
    • /
    • pp.1-8
    • /
    • 2022
  • The purpose of this study is to prepare GPTMS((3-Glycidoxypropyl) trimethoxysilane)-SiO2 nanofluid and analyze the effect of nanofluid injection on carbonate reservoirs. Structural analysis of silica nanoparticles modified by GPTMS was investigated by FTIR(Fourier transform infrared spectroscopy). C-H stretching vibrations at 2,950 cm-1 indicating the silica surface modification with GPTMS were observed when the silane feed was over 0.5 mmol/g. Also, the coreflooding test by nanofluid injection on the aged limestone and dolomite plug samples was carried out with different particle concentration and flow rate. The incremental oil recovery was up to 18.9%, and contact angle and permeability of carbonate samples were changed by the effect of nanoparticle adsorption on pore which caused wettability alteration and pore size change. Therefore, the prepared nanofluid will be utilized as an injection fluid for enhancing oil recovery and modifying fluid flow properties such as change of rock wettability and permeability in carbonate reservoirs.

Mineralogical Characteristics of Marine Sediments Cores from Uleung Basin and Hupo Basin, East Sea (동해 울릉분지와 후포분지 해양 퇴적물 코어의 광물학적 특성)

  • Lee, Su-Ji;Kim, Chang-Hwan;Jun, Chang-Pyo;Lee, Seong-Joo;Kim, Yeongkyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.71-81
    • /
    • 2015
  • This study was carried out in order to investigate the mineralogical characteristics of the core sediments (03GHP-02 and HB13-2), obtained from the Ulleung Basin and Hupo Basin, Korea. The results on mineral compositions, clay mineral compositions, and the total contents and sequential extraction of different fractions of the phosphorus in core samples showed that those values are different in two cores and also at different depths. In both samples, mineral compositions were the same, composed mainly of quartz, microcline, albite, calcite, opal A, pyrite, and clay minerals (illite, chlorite, kaolinite, and smectite). However, the sample from Hupo Basin contains more opal A. Both samples, especially the ones from Hupo Basin contains more smectite than those reported from East Sea, indicating the influence of paleo-Hwangwei River and the Tertiary Formation of Korea Peninsula. For the samples from Uleung Basin, at 0.7-3.5 m range in depth, the low content of opal A and the low illite crystallinity index can be inferred to indicate the relatively cool climate, corresponding to the ice age. Also, the content of total phosphorus was low in those samples. It was reported that East Sea at that time was isolated from the neighboring seas due to the decrease of the sea level, and as a result, the influx of sediments was supposed to be little through the strait and rivers. For the samples from Hupo Basin, there is no significant changes in clay mineral composition and the distribution of phosphorus with increasing depth. This little change can be interpreted to indicate that the sediments comprising the core might be deposited in a relatively short period of time or deposited in sedimentary environment in which there's no significant changes in sediment supplies. The values of crystallinity index of clay minerals are high in those samples, indicating that it was relatively warm during that time. Although the increase of fluctuation pattern can be observed, showing that the climate of this period often changed, it is supposed that it was generally warm.

Anisotropy of Magnetic Susceptibility (AMS) of Granitic Rocks in the Eastern Region of the Yangsan Fault (양산단층 동편 화강암질암의 대자율 이방성(AMS))

  • Cho, Hyeong-Seong;Son, Moon;Kim, In-Soo
    • Economic and Environmental Geology
    • /
    • v.40 no.2 s.183
    • /
    • pp.171-189
    • /
    • 2007
  • A study of anisotropy of magnetic susceptibility (AMS) was undertaken on Cretaceous granitic, volcanic and sedimentary rocks in the eastern region of the Yangsan fault, southeast Korea. A total of 542 independently oriented core samples collected form 77 sites were studied. The main magnetic mineral in granitic rocks is magnetite according to the magnitude of bulk susceptibility, high-temperature susceptibility variation and isothermal remanent magnetization. Both of magnetic lineation and foliation with NE-SW trends are revealed in the granitic rocks, while volcanic rocks show scattered directions and sedimentary rocks show only load foliation parallel to the bedding planes. The following evidences read to the conclusion that both magnetic fabrics in the granitic rocks have been obtained by a tectonic stress before full solidification of the magma: (i) A fully hardened granitic rocks would get hardly any fabric, (ii) Difference of the magnetic fabric trends with those of the geological structures in the granitic rocks themselves formed by brittle deformation after solidification (e.g. patterns of small-faults and joints), (iii) Kinking of biotite and undulose extinction in quartz observed under the polarizing microscope, (iv) Discordance of magnetic fabrics in the granitic rocks with those in the surrounding rocks. The NE-SW trend of the magnetic foliations suggests a NW-SE compressive stress of nearly contemporaneous with the emplacement of the granitic rocks. The compression should have caused a sinistral strike-slip movement of the Yangsan Fault considering the trend of the latter. As the age of the granitic rocks in the study area is reported to be around $60\sim70$ Ma, it is concluded that the Yangsan fault did the sinistral strike-slip movement during this time (L. Cretaceous Maastrichtian - Cenozoic Paleocene).

A Study on the Temperature Distribution of Rock Mass at KAERI Underground Research Tunnel: Verification on the Result of Borehole Heater Test (지하처분연구시설(KURT) 내 암반의 온도 분포에 관한 연구 : 시추공히터시험 결과의 검증)

  • Yoon, Chan-Hoon;Choi, Young-Chul;Kwon, Sang-Ki;Choi, Heui-Joo
    • Tunnel and Underground Space
    • /
    • v.23 no.4
    • /
    • pp.297-307
    • /
    • 2013
  • In this study, the thermal analysis is carried out for a result of borehole heater test using ABAQUS ver 6.10 based on finite element analysis code. Thermal-mechanical rock properties as determined by laboratory tests before the in situ test and characteristics of the atmosphere at the test section are used as the initial condition. When comparing the results of the in situ test and thermal analysis, the temperature of C3 observation hole that is 0.9 m away from the heater showed very similar patterns and figures (about $1.3^{\circ}C$ difference). But the results of the A and B observation hole showed a significant difference around $15^{\circ}C{\sim}20^{\circ}C$. To find the reason for these results, the over-coring is carried out for the A1 and B1 observation holes. As a result of checking the excavated rock core with the naked eye, there is no problem on the number and position of the sensor as the test plan. However the state of cement injection in the observation hole is poor.