• Title/Summary/Keyword: 암상분석

Search Result 119, Processing Time 0.032 seconds

Basin Evolution of the Taebaeksan Basin during the Early Paleozoic (전기 고생대 태백산분지의 분지 진화)

  • Kwon, Yi Kyun;Kwon, Yoo Jin;Yeo, Jung Min;Lee, Chang Yoon
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.427-448
    • /
    • 2019
  • This study reconstructed the paleoenvironments and paleogeography of the Taebaeksan Basin, through a review of the previous researches on sedimentology, paleontology and stratigraphy. This study also carried out a sequence stratigraphic analysis on regional tectonism and sea-level fluctuations on the basin during the Early Paleozoic. The basin broadly occur in the Taebaek, Yeongweol-Jecheon, Jeongseon-Pyeongchang, and Mungyeong areas, Gangwon province, South Korea. The basin-fills are composed mainly of mixed carbonates and siliciclastics, divided into the Taebaek, Yeongweol, Yongtan, Pyeongchang and Mungyeong groups according to lithologies and stratigraphic characteristics. Recently, there are a lot of studies on the provenance and depositional ages of the siliciclastic sequences of the basin. The detrital sediments of the basin would be derived from two separated provenances of the core-Gondwana and Sino-Korean cratons. In the Early Cambrian, the Taebaek and Jeongseon-Pyeongchang platforms have most likely received detrital sediments from the provenance of the Sino-Korean craton. On the other hand, the detrital sediments of the Yeongweol-Jecheon platform was probably sourced by those of the core-Gondwana craton. This separation of provenance can be interpreted as the result of the paleogeographic and paleotopographic separation of the Yeongweol-Jecheon platform from the Taebaek and Jeongseon-Pyeongchang platforms. The analyses on detrital zircons additionally reveal that the separation of provenance was ceased by the eustatic rise of sea-level during the Middle Cambrian, and the detrital sediments of the Taebaeksan Basin were entirely supplied from those of the core-Gondwana craton. During that period, sediment supply from the Sino-Korean craton would be restricted due to inundation of the provenance area of the craton. On the other hand, the Jeongseon-Pyeongchang platform sequences show the unconformable relationship between the Early Cambrian siliciclastic and the Early Ordovician carbonate strata. It is indicative of presence of regional uplift movements around the platform which would be to the extent offset of the effects of the Middle to Late Cambrian eustatic sealevel rise. These movements expanded and were reinforced across the basin in the latest Cambrian and earliest Ordovician. After the earliest Ordovician, the basin was tectonically stabilized, and the shallow marine carbonate environments were developed on the whole-platform by the Early Ordovician global eustatic sea-level rise, forming very thick carbonate strata in the basin. In the Late Ordovician, the Early Paleozoic sedimentation on the basin was terminated by the large-scale tectonic uplift across the Sino-Korean platform including the Taebaeksan Basin.

Landslide Susceptibility Mapping Using Deep Neural Network and Convolutional Neural Network (Deep Neural Network와 Convolutional Neural Network 모델을 이용한 산사태 취약성 매핑)

  • Gong, Sung-Hyun;Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1723-1735
    • /
    • 2022
  • Landslides are one of the most prevalent natural disasters, threating both humans and property. Also landslides can cause damage at the national level, so effective prediction and prevention are essential. Research to produce a landslide susceptibility map with high accuracy is steadily being conducted, and various models have been applied to landslide susceptibility analysis. Pixel-based machine learning models such as frequency ratio models, logistic regression models, ensembles models, and Artificial Neural Networks have been mainly applied. Recent studies have shown that the kernel-based convolutional neural network (CNN) technique is effective and that the spatial characteristics of input data have a significant effect on the accuracy of landslide susceptibility mapping. For this reason, the purpose of this study is to analyze landslide vulnerability using a pixel-based deep neural network model and a patch-based convolutional neural network model. The research area was set up in Gangwon-do, including Inje, Gangneung, and Pyeongchang, where landslides occurred frequently and damaged. Landslide-related factors include slope, curvature, stream power index (SPI), topographic wetness index (TWI), topographic position index (TPI), timber diameter, timber age, lithology, land use, soil depth, soil parent material, lineament density, fault density, normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used. Landslide-related factors were built into a spatial database through data preprocessing, and landslide susceptibility map was predicted using deep neural network (DNN) and CNN models. The model and landslide susceptibility map were verified through average precision (AP) and root mean square errors (RMSE), and as a result of the verification, the patch-based CNN model showed 3.4% improved performance compared to the pixel-based DNN model. The results of this study can be used to predict landslides and are expected to serve as a scientific basis for establishing land use policies and landslide management policies.

Geometry and Kinematics of the Northern Part of Yeongdeok Fault (영덕단층 북부의 기하와 운동학적 특성)

  • Gwangyeon Kim;Sangmin Ha;Seongjun Lee;Boseong Lim;Min-Cheol Kim;Moon Son
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.1
    • /
    • pp.55-72
    • /
    • 2023
  • This study aims to identify the fault zone architecture and geometric and kinematic characteristics of the Yeongdeok Fault, based on the geometry and kinematic data of various structural elements obtained by detailed field survey and anisotropy of magnetic susceptibility (AMS) of the fault rocks. The Yeongdeok Fault extends from Opo-ri, Ganggu-myeon, Yeongdeok-gun to Gilgok-ri, Maehwa-myeon and Bangyul-ri, Giseong-myeon, Uljin-gun, and cuts various rock types from the Paleo-proterozoic to the Mesozoic with a range of 4.6-5.0 km (4.77 km in average) of right-lateral offset or forms the rock boundaries. The fault is divided into four segments based on its geometric features and shows N-S to NNW strikes and dips of an angle of ≥ 54° to the east at most outcrops, even though the outcrops showing the westward dipping (a range of 54°-82°) of fault surface increase as it goes north. The Yeongdeok Fault shows the difference in the fault zone architecture and in the fault core width ranging from 0.3 to 15 m depending on the bedrock type, which is interpreted as due to differences in the physical properties of bedrock such as ductility, mineral composition, particle size, and anisotropy. Combining the results of paleostress reconstruction and AMS in this and previous studies, the Yeongdeok Fault experienced (1) sinistral strike-slip under NW-SE maximum horizontal principle stress (σHmax) and NE-SW minimum horizontal principle stress (σHmin) in the late Cretaceous to early Cenozoic, and then (2) dextral strike-slip under NE-SW maximum horizontal principle stress (σHmax) and NW-SE minimum horizontal principle stress (σHmin) in the Paleogene. It is interpreted that the deformation caused by the Paleogene dextral strike-slip movement was the most dominant, and the crustal deformation was insignificant thereafter.

Geology and U-Pb Age in the Eastern Part of Yeongdeok-gun, Gyeongsangbuk-do, Korea (경북 영덕군 동부 일원의 지질과 U-Pb 연령)

  • Kang, Hee-Cheol;Cheon, Youngbeom;Ha, Sangmin;Seo, Kyunghan;Kim, Jong-Sun;Shin, Hyeon Cho;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.153-171
    • /
    • 2018
  • This study focuses on the investigation of geologic distribution and stratigraphy in the eastern part of Yeongdeok-gun, based on Lidar imaging, detailed field survey, microscopic observations, SHRIMP and LA-MC-ICPMS U-Pb age dating, and a new geological map has been created. The stratigraphy of the study area is composed of the Paleoproterozoic metamorphic rocks consisting of banded gneisses of sedimentary origin and schists ($1841.5{\pm}9.6Ma$) of volcanic origin, Triassic Yeongdeok plutonic rocks ($249.1{\pm}2.3Ma$) and Pinkish granites ($242.4{\pm}2.4Ma$), Jurassic Changpo plutonic rocks ($193.2{\pm}1.9Ma{\sim}188.8{\pm}2.0Ma$) and Fine-grained granites ($192.9{\pm}1.7Ma$), Formations [Gyeongjeongdong Fm, Ullyeonsan Fm. (~108 Ma), Donghwachi Fm.] of the Early Cretaceous Gyeongsang Supergroup and acidic volcanic rocks and dykes erupted and intruded in the Late Cretaceous, Miocene intrusive rhyolitic tuffs ($23.1{\pm}0.2Ma{\sim}22.97{\pm}0.13Ma$) and sedimentary rocks of the Yeonghae basin, and the Quaternary sediments. The Triassic Pinkish granites, Jurassic Changpo plutonic rocks and Fine-grained granites are newly defined plutonic rocks in this study. Miocene intrusive rhyolitic tuffs bounded by the Yangsan Fault, which was first discovered in the north of Pohang city, are believed to play an important role in the understanding of the Miocene volcanic activity and the crustal deformation history on the Korean Peninsula. It is confirmed that The NNE-SSW-striking Yangsan Fault penetrating the central part of the study area and branch faults are predominant in the dextral movement and cutting all strata except the Quaternary sediments.

Characteristics of Growth and Oil Production of Peppermint Cells in an Air-bubble Bioreactor (기포 생물반응기에서 페퍼민트 세포의 생육 및 정유 생산 특성)

  • 송은범;이형주
    • KSBB Journal
    • /
    • v.8 no.5
    • /
    • pp.495-503
    • /
    • 1993
  • To investigate the characteristics of growth and oil production of peppermint cells during a batch culture, cells derived from peppermint callus was cultivated in an air bubble reactor. During the batch culture, effects of inoculum size, abiotic stress, yeast elicitor, and two stage culture on the cell growth, the productivity of oleolesin, and the formation of flavor components were determined and also the sugar concentrations and kinetics of cell growth were analyzed. Among the various sizes of inoculum, the culture with 2.0% packed cell volume inoculum showed the optimum condition for cell growth in the proposed bioreactor, and the cell yield and essential oil production reached to 5.7g/1 and 0.109g/1, respectively. When the abiotic stress of daily 8hr dark and $10^{\circ}C$ cold treatments were given to the culture cell growth decreased but essential oil production increased to 0.546g/l. In a modified Lin-Staba medium in which 100mg/l yeast extract as an elicitor was added to the culture, the cell growth and oil production increased, and menthol content was 22.5% of oil. In the two stage culture, in which the basic culture conditions of 27$^{\circ}C$, light, and without elicitor were employed during the first six days followed by the second stage with daily 8hr treatment of cold and dark condition, and also with yeast extract as an elicitor, cell growth decreased after eight days, essential oil production was not increased, and menthol was not detected. Dry cell yield was 0.38g dry cell/g sugar and specific growth rate was 0.25 day-1. The major terpenoid in the oil was not the menthol but pulegone and piperitone, precursors of menthol were accumulated. However, when yeast elicitor was added, menthol was produced to the level of 22.5% which was the highest value in the peppermint cell culture reported so far.

  • PDF

Evaluation of Cold Tolerance in Rice Cultivars by the Characteristics Related to Chilling Injury -II. Transition Temperature of Respiratory Activity on Rice Cultivars and Cold Tolerance (수도(水稻) 품종(品種)의 냉해관련인자(冷害關聯因子) 특성(特性)에 의(依)한 내냉성(耐冷性) 평가(評價) -II. 호흡활성(呼吸活性) 전이온도(轉移溫度)와 내냉성(耐冷性))

  • Seok, Soon-Jong;Ha, Ho-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.3
    • /
    • pp.200-205
    • /
    • 1991
  • To evaluate cold tolerance of rice cultivars on the basis of a relationship between cold tolerance in the field test and a biochemical character, transition-temperature of respiratory activity of mitochondria(TRM) which were isolated from different parts and at different growth stages and from etiolated rice seedling was investigated, and its relationship with degree of cold tolerance(DCT) in the field experiment was studied. The results obtained were summarized as follows. 1. The transition-temperature of respiratory activity of mitochodria (TRM) isolated from etiolated seedling ($25^{\circ}C$, two week-grown in the dark) of cold tolerant cultivars tended to be low, while that of cold susceptible cultivars to be high. 2. The correlation between TRM of etiolated seedling and the degree of cold tolerance(DCT) was $r=0.8935^{**}$ in 1988 and $r=0.8236^{**}$ in 1989. The correlation coefficient between TRM of 4-leaf seedling and DCT was $0.6239^{**}$ 3. TRM of young panicle was correlated with DCT except a few varieties. 4. TRM of seedling increased with growth as $12.5^{\circ}C$, $14.5^{\circ}C$, $15.5^{\circ}C$ and $16.5^{\circ}C$ at 1, 2, 3~4 and 5weeks respectively. 5. The transition temperature of mitochondrial respiratory activity was not significantly influenced by growth stages as $15.0{\sim}16.0^{\circ}C$ in Pungsanbyeo and $17.0{\sim}18.0^{\circ}C$ in Satbyelbyeo, while it was significantly different depending upon the degree of cold tolerance(tolerant, medium, susceptible).

  • PDF

Optimization of Support Vector Machines for Financial Forecasting (재무예측을 위한 Support Vector Machine의 최적화)

  • Kim, Kyoung-Jae;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.241-254
    • /
    • 2011
  • Financial time-series forecasting is one of the most important issues because it is essential for the risk management of financial institutions. Therefore, researchers have tried to forecast financial time-series using various data mining techniques such as regression, artificial neural networks, decision trees, k-nearest neighbor etc. Recently, support vector machines (SVMs) are popularly applied to this research area because they have advantages that they don't require huge training data and have low possibility of overfitting. However, a user must determine several design factors by heuristics in order to use SVM. For example, the selection of appropriate kernel function and its parameters and proper feature subset selection are major design factors of SVM. Other than these factors, the proper selection of instance subset may also improve the forecasting performance of SVM by eliminating irrelevant and distorting training instances. Nonetheless, there have been few studies that have applied instance selection to SVM, especially in the domain of stock market prediction. Instance selection tries to choose proper instance subsets from original training data. It may be considered as a method of knowledge refinement and it maintains the instance-base. This study proposes the novel instance selection algorithm for SVMs. The proposed technique in this study uses genetic algorithm (GA) to optimize instance selection process with parameter optimization simultaneously. We call the model as ISVM (SVM with Instance selection) in this study. Experiments on stock market data are implemented using ISVM. In this study, the GA searches for optimal or near-optimal values of kernel parameters and relevant instances for SVMs. This study needs two sets of parameters in chromosomes in GA setting : The codes for kernel parameters and for instance selection. For the controlling parameters of the GA search, the population size is set at 50 organisms and the value of the crossover rate is set at 0.7 while the mutation rate is 0.1. As the stopping condition, 50 generations are permitted. The application data used in this study consists of technical indicators and the direction of change in the daily Korea stock price index (KOSPI). The total number of samples is 2218 trading days. We separate the whole data into three subsets as training, test, hold-out data set. The number of data in each subset is 1056, 581, 581 respectively. This study compares ISVM to several comparative models including logistic regression (logit), backpropagation neural networks (ANN), nearest neighbor (1-NN), conventional SVM (SVM) and SVM with the optimized parameters (PSVM). In especial, PSVM uses optimized kernel parameters by the genetic algorithm. The experimental results show that ISVM outperforms 1-NN by 15.32%, ANN by 6.89%, Logit and SVM by 5.34%, and PSVM by 4.82% for the holdout data. For ISVM, only 556 data from 1056 original training data are used to produce the result. In addition, the two-sample test for proportions is used to examine whether ISVM significantly outperforms other comparative models. The results indicate that ISVM outperforms ANN and 1-NN at the 1% statistical significance level. In addition, ISVM performs better than Logit, SVM and PSVM at the 5% statistical significance level.

Characteristics and Stratigraphic Implications of Granitic Rock Fragments in the Pyroclastic Rocks, SE Jinhae, Korea (진해시 남동부 화성쇄설암 내 화강암편의 특징과 층서적 의미)

  • Cho, Hyeong-Seong;Kim, Jong-Sun;Lee, Jeong-Hwan;Jeong, Jong-Ok;Son, Moon;Kim, In-Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.116-128
    • /
    • 2007
  • Detailed geological mapping, petrographic study, analyses of geochemistry and magnetic susceptibility, and K-Ar dating were carried out in order to determine the origin, age, and stratigraphic implications of granitic rock fragments in the pyroclastic rocks, SE Jinhae city, southern part of the Gyeongsang Basin. As a result, it was found that the area is composed of volcanics and tuffaceous sediments of the Yucheon Group, Bulguksa granites, pyroclastics bearing granitic rock fragments, $basalt{\sim}basaltic$ andesite, and rhyolite in ascending stratigraphic order. The granitic rock fragments in the pyroclastic rocks are divided into granodiorite and biotite granite, which have approximately the same characteristics as the granodiorite and the biotite granite of the Bulguksa granites, respectively, in and around the study area including color, grain size, mineral composition, texture (perthitic and micrographic textures), intensity of magnetic susceptibility (magnetite series), and geochemical features (calc-alkaline series and REE pattern). This leads to the conclusion that the rock fragments originated from the late Cretaceous Bulguksa granites abundantly distributed in and around the study area, but not from the basement rocks of the Yeongnam massif or the Jurassic granites. Based on relative and absolute ages of various rocks in the study area, the pyroclastics bearing granitic rock fragments are interpreted to have erupted between 52 and 16 Ma, i.e. during the Eocene and early Miocene. These results indicate that the various volcanisms, acidic to basic in composition, occurred after the intrusion of the Bulguksa granites, contrary to the general stratigraphy of the Gyeongsang Basin. Very detailed and cautious mapping together with relative and absolute age determinations are, thus, necessary in order to establish reliable stratigraphy of the Yucheon Group in other areas of the Gyeongsang Basin.

Site Characterization using Shear-Wave Velocities Inverted from Rayleigh-Wave Dispersion in Chuncheon, Korea (레일리파 분산을 역산하여 구한 횡파속도를 이용한 춘천시의 부지특성)

  • Jung, JinHoon;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • To reveal and classify site characteristics in densely populated areas in Chuncheon, Korea, Rayleigh-waves were recorded at 50 sites including four sites in the forest area using four 1-Hz velocity sensors and 24 4.5-Hz vertical geophones during the period of January 2011 to May 2013. Dispersion curves of the Rayleigh waves obtained by the extended spatial autocorrelation method were inverted to derive shear-wave velocity ($v_s$) models comprising 40 horizontal layers of 1-m thickness. Depths to weathered rocks ($D_b$), shear wave velocities of these basement rocks ($v_s^b$), average velocities of the overburden layer ($\bar{v}_s^s$), and the average velocity to a depth of 30 m ($v_s30$), were then derived from those models. The estimated values of $D_b$, $v_s^b$, $\bar{v}_s^s$, and $v_s30$ for 46 sites at lower altitudes were in the ranges of 5 to 29 m, 404 to 561 m/s, 208 to 375 ms/s, and 226 to 583 m/s, respectively. According to the Korean building code for seismic design, the estimated $v_s30$ indicates that the lower altitude areas in Chuncheon are classified as $S_C$ (very dense soil and soft rock) or $S_D$ (stiff soil). To determine adequate proxies for $v_s30$, we compared the computed values with land cover, lithology, topographic slope, and surface elevation at each of the measurement sites. Due to a weak correlation (r = 0.41) between $v_s30$ and elevation, the best proxy of them, applications of this proxy to Chuncheon of a relatively small area seem to be limited.

MACROPHYLLA/ROTUNDIFOLIA3 gene of Arabidopsis controls leaf index during leaf development (잎의 발달단계의 leaf index를 조절하는 애기장대 MACROPHYLLA/ROTUNDIFOLIA3 유전자)

  • Jun, Sang-Eun;Chandrasekhar, Thummala;Cho, Kiu-Hyung;Yi, Young-Byung;Hyung, Nam-In;Nam, Jae-Sung;Kim, Gyung-Tae
    • Journal of Plant Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.285-292
    • /
    • 2011
  • In plants, heteroblasty reflects the morphological adaptation during leaf development according to the external environmental condition and affects the final shape and size of organ. Among parameters displaying heteroblasty, leaf index is an important and typical one to represent the shape and size of simple leaves. Leaf index factor is eventually determined by cell proliferation and cell expansion in leaf blades. Although several regulators and their mechanisms controlling the cell division and cell expansion in leaf development have been studied, it does not fully provide a blueprint of organ formation and morphogenesis during environmental changes. To investigate genes and their mechanisms controlling leaf index during leaf development, we carried out molecular-genetic and physiological experiments using an Arabidopsis mutant. In this study, we identified macrophylla (mac) which had enlarged leaves. In detail, the mac mutant showed alteration in leaf index and cell expansion in direction of width and length, resulting in not only modification of leaf shape but also disruption of heteroblasty. Molecular-genetic studies indicated that mac mutant had point mutation in ROTUDIFOLIA3 (ROT3) gene involved in brassinosteroid biosynthesis and was an allele of rot3-1 mutant. We named it mac/rot3-5 mutant. The expression of ROT3 gene was controlled by negative feedback inhibition by the treatment of brassinosteroid hormone, suggesting that ROT3 gene was involved in brassinosteroid biosynthesis. In dark condition, in addition, the expression of ROT3 gene was up-regulated and mac/rot3-5 mutant showed lower response, compare to wild type in petiole elongation. This study suggests that ROT3 gene has an important role in control of leaf index during leaf expansion process for proper environmental adaptation, such as shade avoidance syndrome, via the control of brassinosteroid biosynthesis.