• Title/Summary/Keyword: 암반 불연속면

Search Result 284, Processing Time 0.029 seconds

Orientations of Tecto-lineaments and Discontinuities for Different Rock Types in Andong Area (안동지역의 암종별 선구조선과 불연속면의 방위특성)

  • Kim Gyo-Won;Ihm Myeong-Hyeok
    • The Journal of Engineering Geology
    • /
    • v.16 no.1 s.47
    • /
    • pp.23-30
    • /
    • 2006
  • This study was carried out to understand the relationship between orientation of tecto-lineaments obtained from aero-photograph and orientation of discontinuities measured at field for the rock types of igneous, sedimentary and metamorphic rocks in Andong area. Total 847 tecto-lineaments were extracted from the aero-photographs and total 1,940 discontinuities including joints, foliations and faults were measured during geologic survey. By using the software DIPS, preferred trends of tecto-lineaments were deduced as N30E-N40E for igneous rocks and N50E-N60E for both sedimentary and metamorphic rocks, while the trends of discontinuities were found as N40E-N50E for igneous rocks, N50E-N80E for sedimentary rocks and N50E-N60E for meta morphic rocks. Even though both orientations for a given rock type showed relatively good agreement in its trend, some discrepancy is also appeared. Since construction safety of geo-structures such as tunnel and slope, etc., is significantly affected by the orientation of discontinuities in rock masses, it is highly recommended to perform a detailed geologic survey as well as an aero-photograph interpretation at a design stage.

불연속면을 고려한 암반 사면의 안정성 해석

  • 이상수;박연준;유광호
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2001.03a
    • /
    • pp.177-187
    • /
    • 2001
  • 암반사면의 안정성은 암반 내에 발달한 불연속면의 방향성과 파괴특성에 지대한 영향을 받는다. 두 조의 연속성이 좋은 절리가 발달한 암반의 거동을 해석하기 위해 FLAC의 FISH 언어로 작성된 편재 절리모델을 사용하여 절리암반사면의 안정성을 평가하였다. 해석 결과는 절리의 간격과 방향성을 달리하면서 수행된 UDEC 해석과 저면 마찰 모델 시험결과와 비교하였다. UDEC 해석과 저면 마찰 모형시험 의해 발생된 파괴면의 형상은 유사하였으며, 이 결과로부터 편재절리모델에 의한 FLAC 해석에서의 파괴면은 두 조의 교차하는 절리를 따라 계단식으로 파괴면이 발생함을 추정할 수 있었다.

  • PDF

New Observational Design and Construction Method for Rock Block Evaluation of Tunnels in Discontinuous Rock Masses (불연속성 암반에서의 터널의 암반블럭 평가를 위한 신 정보화설계시공법)

  • Hwang Jae-Yun
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.1-10
    • /
    • 2006
  • Rock masses in nature include various rock discontinuities such as faults, joints, bedding planes, fractures, cracks, schistosities, and cleavages. The behavior of rock structures, therefore, is mainly controlled by various rock discontinuities. In many tunnels, enormous cost and time are consumed to cope with the failing or sliding of rock blocks, which cannot be predicted because of the complexity of rock discontinuities. It is difficult to estimate the properties of rock masses before the rock excavation. The observational design and construction method of tunnels in rock masses is becoming important recently. In this paper, a new observational design and construction method for rock block evaluation of tunnels in discontinuous rock masses is proposed, and then applied to the tunnel based on actual rock discontinuity information observed in the field. It is possible to detect key blocks all along the tunnel exactly by using the numerical analysis program developed far the new observational design and construction method. This computer simulation method with user-friendly interfaces can calculate not only the stability of rock blocks but also the design of supplementary supports. The effectiveness of the proposed observational design and construction method has been verified by the confirmation of key block during the enlargement excavation.

Sensitivity Analyses of Three-Dimensional Discrete Fracture Network Modeling of Rock Mass (암반의 3차원 불연속균열망(DFN)에 관한 연구 및 민감도분석)

  • Park, Jung Chan;Park, Seung Hun;Kim, Ha Yung;Kim, Geon-Young;Kwon, Sangki
    • Tunnel and Underground Space
    • /
    • v.25 no.4
    • /
    • pp.341-358
    • /
    • 2015
  • This study analyzes the relationship between parameters of the discontinuity in Discrete Fracture Network model such as fracture intensity, fracture orientation, fracture size, fracture shape etc. In this paper, FracMan code was used to model and analyze 3D DFN. A sensitivity analysis was performed in order to analyze the relationship between linear fracture intensity measure ($P_{10}$) and parameters of the discontinuity in $100m{\times}100m{\times}100m$ model area. As a result the sensitivity analysis showed that key parameters affecting fracture intensity are fracture orientation (Trend / Plunge). Conversion factor($C_{13}$) for $P_{10}$, to calculate volumetric fracture intensity measure ($P_{32}$), is derived in case of vertical well and horizontal well when trend is $10^{\circ}$, $30^{\circ}$, $60^{\circ}$, $90^{\circ}$, $120^{\circ}$, $150^{\circ}$, $180^{\circ}$ (7cases) and plunge is $5^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$, $85^{\circ}$ (7cases). It is expected that this paper can be used effectively for modeling and understanding DFN model.

터널굴착에서 불연속면에 의한 공동주변 암반블록의 안정성 해석

  • 송재준;이정인
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1995.03a
    • /
    • pp.109-120
    • /
    • 1995
  • 절리가 발달된 경암질 암반내에서 터널을 굴착할 때에 발생하는 심각한 문제중의 하나는 암반내에 존재하는 불연속면과 굴착에 의하여 형성되는 자유면에 의하여 생성된 블록의 낙반 사고이다. R.E. Goodman, Gen-hua shi$^{3)}$ 등에 의하여 제안된 블록이론은 암반사면이나 지하공동에 존재하는 절리들의 방향성을 조사하여 우세한 방향의 절리들에 의하여 발생하는 블록들의 안정, 불안정 및 낙반의 가능성 여부를 판정할 수 있도록 하였다. (중략)

  • PDF

A Study on the Extraction of Slope Surface Orientation using LIDAR with respect to Triangulation Method and Sampling on the Point Cloud (LIDAR를 이용한 삼차원 점군 데이터의 삼각망 구성 방법 및 샘플링에 따른 암반 불연속면 방향 검출에 관한 연구)

  • Lee, Sudeuk;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.26 no.1
    • /
    • pp.46-58
    • /
    • 2016
  • In this study, a LIDAR laser scanner was used to scan a rock slope around Mt. Gwanak and to produce point cloud from which directional information of rock joint surfaces shall be extracted. It was analyzed using two different algorithms, i.e. Ball Pivoting and Wrap algorithm, and four sampling intervals, i.e. raw, 2, 5, and 10 cm. The results of Fuzzy K-mean clustering were analyzed on the stereonet. As a result, the Ball Pivoting and Wrap algorithms were considered suitable for extraction of rock surface orientation. In the case of 5 cm sampling interval, both triangulation algorithms extracted the most number of the patch and patched area.

Stability Analysis of Rock Slope (암반절취사면의 안정해석)

  • Cho, Seong Seop;Kim, Yong Seong;Chee, In Taeg;Lee, Dal Won
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.1-12
    • /
    • 1996
  • To design the safe and rational rock slope, several rock slopes of roads in Kang-won area were analyzed, and the following results were obtained ; 1. The results were analyzed by stereographic projection at the rock slope that the joint was developed. All of the sloped which were designed by standard slope of rock was not considered that the joints were unstable. 2. The relation of rainfall and slope failure, as well as the danger of failure, was very high when the maximum hourly rainfall was larger than 20mm and when there was a 2-day cumulative rainfall that was larger than 200mm. 3. In the design of rock slope, operated by the stereographic projection considering discontinuity. If turn out unstable, it should be analyzed carefully using the limit equilibrium method. 4. In the design of rock slope, it is desirable to consider the discontinuity of rock(joint, bedding, fault).

  • PDF

Kinematic Analysis of Plane Failure for Rock Slope Using GIS and Probabilistic Analysis Method (GIS와 확률론적 해석 기법을 기반으로 한 평면파괴의 운동학적 안정성 해석)

  • Lee, Seok Hwan;Park, Hyuck Jin
    • Economic and Environmental Geology
    • /
    • v.47 no.2
    • /
    • pp.121-131
    • /
    • 2014
  • The stability of rock slope is mainly controlled by the orientation and shear strength of discontinuties in rock mass. Therefore, in kinematic analysis, the orientation of the combination of discontinuities and slope face is examined to determine if certain modes of failure can be occurred. In previous kinematic analysis, a representative orientation of the slope face and mean orientation of discontinuity set were used as input parameters. However, since the orientations of slope face varies according to locations of measurement, the representative slope face orientation could cause misunderstanding for kinematic instability. In addition, since the orientations of each discontinuity are scattered in the same discontinuity set, there is the possibility that uncertainties are involved in the procedure of kinematic analysis. Therefore, in this study, the detailed digital topographic map was used to obtain the orientation of slope face. In addition, the probabilistic analysis approach was utilized to deal properly with the uncertainties in discontinuity orientation. The proposed approach was applied to steep slopes in mountain road located in Baehuryeong, Chunncheon city, Gangwon-Do. The analysis results obtained from the deterministic and probabilistic analysis were compared to check the feasibility of proposed the analysis.

Discontinuity Analysis Method using Reverse Engineering (역분석공학기법을 이용한 불연속면 분석 프로그램 개발)

  • Park, Eui-Seob;Jung, Yong-Bok;Ryu, Chang-Ha;SunWoo, Choon;Choi, Yong-Kun;Heo, Sung;Cheon, Dae-Sung
    • Tunnel and Underground Space
    • /
    • v.17 no.3 s.68
    • /
    • pp.165-174
    • /
    • 2007
  • The technique, which reproduces the figures of objects from measured data of the objects using 3-D laser scanner, is called reverse engineering. Recently, research studies into applications of reverse engineering to rock engineering are increasing in number, in the discontinuity surveys for rock slopes out of man's reach, or rapid discontinuity surveys for wide range areas. For analysis of discontinuity using reverse engineering, a program for processing point clouds data from the 3-D laser scanner, for sampling from these point clouds data, and finally analyzing the discontinuity is needed. However, existing programs rarely have sufficient functions to properly analyze the discontinuities. In this study, a program was developed, which can automatically sample discontinuities from the point clouds data which measured in a rock slope using a 3-D laser scanner, and which can also undertake statistical analysis of the discontinuities. This developed program was verified by the application of discontinuity surveys in a rock slope and a tunnel. By undertaking the discontinuity survey using a 3-D laser scanner and the developed program, the feasibility and rapidity of such surveys is expected to improve in areas out of man's reach in geotechnical surveys. Taking into consideration the fact that the international level of related techniques is at a rudimentary stage, the possibility of prior occupation of a broad market is also expected.

The Characteristics of Stress Distribution on Two-arch Tunnel's Pillar due to Surface Loads in the Discontinuous Rock Mass (불연속성 암반에 위치한 2-아치 터널에서 지표면 하중 작용시 필러에 전달되는 응력 특성)

  • Kim, Hong-Moon;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.65-73
    • /
    • 2009
  • Large scale model tests and numerical analyses are performed to investigate the stress distribution of pillar due to surface loading nearby two-arch tunnel which is constructed in the regularly jointed rocks. It is observed that the influence of discontinuities on the stress distribution in the discontinuous rock mass and the underground stresses induced by surface loading are greater than those of linear elastic theory. Especially, lines of equal stresses are developed to the direction of inclination according to the inclined grade. In cases of discontinuities imbedded in parallel with or vertical to the ground, the pressure bulbs are formed symmetrically, however, the inclined ones result in stress distribution in parallel with and vertical to the planes of discontinuities. Results indicated that stress distribution is seriously affected by the angle of discontinuity. When stresses propagating to the pillar need to be estimated, relative location of surface loading, grade of discontinuous plane, and location of two-arch tunnel should be carefully considered.