• Title/Summary/Keyword: 암반 굴착

Search Result 604, Processing Time 0.029 seconds

Effects of free surface using waterjet cutting for rock blasting excavation (워터젯 자유면을 이용한 암반발파 굴착공법의 효과)

  • Oh, Tae-Min;Cho, Gye-Chun;Ji, In-Taeg
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.1
    • /
    • pp.49-57
    • /
    • 2013
  • The conventional blasting method generates serious blasting vibration and underbreak/overbreak in spite of its high efficiency for rock excavation. To overcome these disadvantages, this paper introduces an alternative excavation method that combines the conventional blasting process with the free surface on the perimeter of the tunnel face using waterjet cutting technology. This proposed excavation method has advantages of (1) reducing vibration and noise level; (2) minimizing underbreak and overbreak; and (3) maximizing excavation efficiency. To verify the effects of the proposed excavation method, field tests were performed with a smooth blasting method at the same excavation conditions. Test results show that the vibration is reduced by up to 55% and little underbreak/overbreak is generated compared with the smooth blasting method. In addition, the excavation efficiency of the proposed method is greater than that of the smooth blasting method. The proposed blasting method with a free surface using waterjet cutting can be applied to urban excavation construction as well as to underground structure construction.

Application of Rockmass Prediction System during tunnel excavation(Sol-An Tunnel) (터널 굴착시 암반예측시스템 적용사례 (솔안터널))

  • 김용일;조상국;양종화;김장수;이내용
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2003.03a
    • /
    • pp.13-30
    • /
    • 2003
  • In this paper, a new systematic method will be introduced, in which a Rock-mass Prediction System(RPS) predicts the geological conditions and rock mass movements before tunnel excavation and the appropriate counter-measures are taken in the expected weak zones during tunnel construction. The Rock-mass Prediction System(RPS) consists of the LIM, a horizontal core drilling and a seismic exploration method(TSP/HSP). In the Rock-mass Prediction System(RPS), the seismic exploration method (TSP/HSP) gives information on the locations of the weak zones such as major faults and voids in wide-range, and the horizontal core drillings are utilized to find exact location and widths of the faults or voids near the weak zones which was predicted by the seismic exploration method (TSP/HSP). The LIM is used to find the hardness of the rock mass and small weak zones near the excavation face. The Rock-mass Prediction System (RPS) was successfully applied to the Sol-An Tunnel and the effectiveness of the system was verified.

  • PDF

A Study on Joint by Two-Stage Excavation in Tunnel (2단계로 굴착되는 터널의 절리에 대한 연구)

  • Byun Gwang-Wook;An Joung-Hwan;Kim Dong-Gab;Lee Sang-Duk
    • Tunnel and Underground Space
    • /
    • v.15 no.3 s.56
    • /
    • pp.185-194
    • /
    • 2005
  • Recently, the surrounding rock mass is understood as the major support system for the tunnel constructed in the rock mass. Generally, the rock mass contains many discontinuity planes such as joints, and thus, the tunnel behavior in the rock mass is governed by the characteristics of the discontinuity planes. In this study, the behavior of tunnel in jointed rock mass is studied by model tests and numerical analyses. The results shows that the behavior of tunnel depends on the different initial stress conditions, in case that the tunnel is excavated in the ground without any joints. When a joint is located near the tunnel, the pound stress and displacement tend to increase between the tunnel and the joint.

Effect of Rock Mass Condition on the Earth Pressure Against an Excavation Wall in Rock Mass: Numerical Investigation (암반지층 굴착벽체 작용토압에 대한 암반조건의 영향: 수치해석적 조사)

  • Son, Moorak;Adedokun, Solomon
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.11
    • /
    • pp.83-95
    • /
    • 2017
  • This study examined the magnitude and distribution of earth pressure on the excavation wall in jointed rock mass by considering different groundwater conditions under various rock types, joint inclination angles, and earth pressure coefficients. Based on a physical model test (Son and Park, 2014), extended studies were conducted considering rock-structure interactions based on the discrete element method, which can consider the joints characteristics of rock mass. The results showed that the earth pressure was highly influenced by the groundwater condition as well as the rock type, joint inclination angle, and earth pressure coefficient. The results were also compared with Peck's earth pressure for soil ground, and clearly showed that the earth pressure in jointed rock mass can be greatly different from that in soil ground.

An Introduction to the DECOVALEX-2019 Task G: EDZ Evolution - Reliability, Feasibility, and Significance of Measurements of Conductivity and Transmissivity of the Rock Mass (DECOVALEX-2019 Task G 소개: EDZ Evolution - 굴착손상영역 평가를 위한 수리전도도 및 투수량계수 측정의 신뢰도, 적합성 및 중요성)

  • Kwon, Saeha;Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.306-319
    • /
    • 2020
  • Characterizations of Excavation Damage Zone (EDZ), which is hydro-mechanical degrading the host rock, are the important issues on the geological repository for the spent nuclear fuel. In the DECOVALEX 2019 project, Task G aimed to model the fractured rock numerically, describe the hydro-mechanical behavior of EDZ, and predict the change of the hydraulic factor during the lifetime of the geological repository. Task G prepared two-dimensional fractured rock model to compare the characteristics of each simulation tools in Work Package 1, validated the extended three-dimensional model using the TAS04 in-situ interference tests from Äspö Hard Rock Laboratory in Work Package 2, and applied the thermal and glacial loads to monitor the long-term hydro-mechanical response on the fractured rock in Work Package 3. Each modelling team adopted both Finite Element Method (FEM) and Discrete Element Method (DEM) to simulate the hydro-mechanical behavior of the fracture rock, and added the various approaches to describe the EDZ and fracture geometry which are appropriate to each simulation method. Therefore, this research can introduce a variety of numerical approaches and considerations to model the geological repository for the spent nuclear fuel in the crystalline fractured rock.

Evaluation of Penetration Rate and Cutter Life of TBM in Jook-Ryung Tunnel (죽령터널에서의 TBM 굴착속도 및 커터수명 평가연구)

  • Park Chul-Whan;Synn Joong-Ho;Park Yeon-Jun;Jeon Seok-Won;An Hyung-Jun
    • Tunnel and Underground Space
    • /
    • v.15 no.5 s.58
    • /
    • pp.378-386
    • /
    • 2005
  • Jook-Ryung roadway tunnel was constructed by drill-blast after pilot tunnelling by 2 TBMS. nis report analyzes the data for TBM performance in the total length of 7.3 km for the two pilot tunnels. Net penetration rates were recorded as high as 2.3 m/h and 2.0 m/h for the two different directions while degrees of operation were $31.4\%$ and $33.3\%$, respectively. The cutter lives for No.2 tunnel were evaluated $200\~280\;m^3/c$ and around 400 m/set as high as for Meraker 10 km tunnel in Norway. The relationship between net penetration rate and characteristics of rock mass which were obtained by RMR and TSP measurement, coincides with the prior studies. This kind of evaluation is expected to be used to design TBM tunnelling and to help to perform the TBM operation effectively

Estimation of Elastic Modulus of Jointed Rock Mass under Tunnel Excavation Loading (터널 굴착하중 조건에서의 절리암반의 탄성계수 예측)

  • Son, Moorak;Lee, Won-Ki;Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.7
    • /
    • pp.17-26
    • /
    • 2014
  • Tunneling-induced displacement in a jointed rock mass is an important factor to control tunnel stability and to secure a demanded space and construction quality. The magnitude of the inducible displacements is significantly affected by an elastic modulus and therefore, in a rock mass where a joint controls tunnel behavior, it is very important to estimate an elastic modulus of jointed rock mass reliably. Elastic modulus of jointed rock mass is affected by many factors such as rock type, joint condition, and loading condition. Nevertheless, most existing studies were focused on rough empirical relationships based on compressive loading conditions, which are different from tunnel excavation loading conditions, without a systematic approach of rock, joint, and loading conditions together. Therefore, this study considered rock and joint conditions systematically to estimate an elastic modulus of jointed rock mass under tunnel excavation loading. The controlled factors considered in this study are rock types and joint conditions (joint shear strength, joint inclination angle, number of joint sets, and joint spacing). Numerical parametric studies have been carried out with a consideration of different rock and joint conditions; the results have been compared with existing empirical relationships; and charts of elastic modulus change of different rock and joint conditions have been provided. The results are expected to have a great practical use for estimating the convergence induced by tunnel excavation in jointed rockmass.

Estimation of Elastic Modulus in Rock Mass for Assessing Displacment in Rock Tunnel (암반터널에서의 변위파악을 위한 암반 탄성계수 추정)

  • Son, Moorak;Li, Sudan;Lee, Wonki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2C
    • /
    • pp.83-92
    • /
    • 2011
  • Elastic modulus in rockmass is an important factor to represent the characteristic of rock deformation and is used to estimate the displacement due to tunnel excavation. Nevertheless, the study to estimate the elastic modulus, which condisiders the rock type and joint characteristics (joint shear strength and joint inclination angle), has been done in less frequency. Accordingly, this study is aimed at providing the method to estimate the elastic modulus of rockmass in the various rock and joint conditons and the results grasped from the study. For this purpose, the 2D discrete numerical analysis will be carried out and the displacements due to tunnel excavation will be investigated with the consideration of rock and joint conditions. Then the displacement results will be used to estimate the elastic modulus of rockmass in which rock and joint conditions are considered with the utilization of the elastic theory of circular tunnel. The results of elastic modulus, which considers the conditions of various rock and joint, would be expected to have a great practical use in field.