본 연구는 관엽식물 8종을 선정하여 온도, 광도, 이산화탄소 농도에 따른 식물의 광합성률을 포함한 생리반응을 살펴 보고, 그에 따른 실내 환경 개선에 효과적인 식물을 구명하고자 실시하였다. 식물재료로는 헤데라, 벤자민 고무나무, 파키라, 스파티필름, 시서스, 디펜바키아, 스킨답서스, 싱고니움을 사용하였으며, $16^{\circ}C$와 $22^{\circ}C$ 온도조건하에서 광도는 PPFD 0, 25, 50, 75, 100, 150, 300, 또는 $600{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$의 수준으로, 이산화탄소 농도는 0, 50, 100, 200, 400, 700, 또는 $1,000{\mu}molCO_2{\cdot}mol^{-1}$의 수준으로 조절하여 휴대용 광합성 측정기(Li-6400, Li Cor, USA)로 관엽식물들의 광합성 효율과 증산율을 측정하였다. 광도, 엽육내 이산화탄소 농도 변화, 그리고 온도에 따른 관엽식물들의 광합성 반응은 매우 다양했다. 약광(PPFD $0-100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$)에서의 광합성 능력을 나타내는 순양자수율은 디펜바키아를 제외한 대부분의 종에서 높게 나타났으며, 고광(PPFD $200-600{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$)에서는 헤데라, 벤자민 고무나무, 파키라, 스파티필름이 높은 광합성능력을 나타내었다. 이산화탄소를 고정하는 암반응과 관련된 탄소고정효율은 시서스와 싱고니움을 제외한 6종의 관엽식물들에서 비교적 높게 나타났다. 고농도의 이산화탄소에서 광합성률이 높은 식물은 헤데라와 스파티필름이었으며, $22^{\circ}C$에서 자란 벤자민 고무나무와 파키라도 높은 광합성률을 보였다. 한편, 헤데라, 스파티필름은 증산율도 높게 나타났다. 따라서 저광, 고농도의 이산화탄소, 낮은 상대습도가 특징인 일반 가정이나 사무실 같은 실내 환경을 고려했을 때 헤데라, 벤자민 고무나무, 파키라, 스파티필름 등을 이용하는 것이 실내 환경 개선에 효과적이라고 판단되었다.