• Title/Summary/Keyword: 암모니아 해리율

Search Result 2, Processing Time 0.018 seconds

A Theoretical Performance Analysis of Small Liquid Rocket Engine for Space Vehicle Attitude Control (우주비행체 자세제어용 소형 액체로켓엔진의 이론성능 해석)

  • Kim Jeong-Soo;Park Jeong;Kim Sung-Cho;Choi Jong-Wook;Jang Ki-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.196-200
    • /
    • 2005
  • A theoretical model for the calculation of chemical equilibrium composition of propellant combustion product is briefly presented for the performance analysis of monopropellant hydrazine rocket engine. Analysis result is compared to that of test and evaluation of 1-lbf class thruster and is scrutinized primarily from the view point of ammonia dissociation fraction. Chemical equilibrium composition and average molecular weight is additionally depicted according to the variation of propellant inlet pressures and the varying nozzle area ratio. The theoretical analysis is tried as a way of derivation of design parameters for mid- and large-thrust class of monopropellant rocket engines.

  • PDF

A Reaction Kinetic for Selective Catalytic Reduction of NOx with NH3 over Manganese Oxide (NMO, MnO2, Mn2O3) at Low Temperature (망간산화물(NMO, MnO2, Mn2O3)을 이용한 저온에서의 NH3-SCR의 반응속도 연구)

  • Kim, Min Su;Hong, Sung Chang
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.307-314
    • /
    • 2018
  • In this study, NMO (Natural Manganese Ore), $MnO_2$, and $Mn_2O_3$ catalysts were used in the selective catalytic reduction process to remove nitrogen oxides (NOx) using $NH_3$ as a reducing agent at low temperatures in the presence of oxygen. In the case of the NMO (Natural Manganese Ore), it was confirmed that the conversion of nitrogen oxides in the stability test did not change even after 100 hours at 423 K. The Kinetics experiments were carried out within the range where heat and mass transfer were not factors. From a steady-state Kinetics study, it was found that the low-temperature SCR reaction was zero order with the respect to $NH_3$ and 0.41 ~ 0.57 order with the respect to NO and 0.13 ~ 0.26 order with the respect to $O_2$. As temperature increases, the reaction order decreases as a result of $NH_3$ and oxygen concentration. It was confirmed that the reaction between the $NH_3$ dissociated and adsorbedon the catalyst surface and the gaseous nitrogen monoxide (E-R model) and the reaction with the adsorbed nitrogen monoxide (L-H model) occur.