• Title/Summary/Keyword: 알루미늄 6061 기지재

Search Result 4, Processing Time 0.02 seconds

High Temperature Deformation Behaviour of Particulate Reinforced Aluminium Composites (입자분산강화 알루미늄 복합재료의 고온거동에 관한 연구)

  • Gwon, Hyeok-Cheon;Yun, Ui-Park
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.765-774
    • /
    • 1995
  • The hot deformation behaviour of particulate reinforced aluminium 6061 Al composite were investigated by hot compression tests in the temperature range from 623K to 823K with strain rate of 10$^{-3}$ ~5.0 S$^{-1}$ . The effect of reinforced particulate volume fraction, mean diameter on the high temperature flow stress has also been studied. Experimental results showed that the increase in the volume fraction of reinforcement contributed to the rising of yield stress, but the stress above the yield point appeared to be steady state at all volume fractions. The apparent activation energy for deformation was 290KJ/mo1 for unreinforced 6061 Al, 327KJ/mo1 for 6061 Al-20vo1.% SiC composite and 531KJ/mo1 for 6061 Al-20vo1.%A1$_2$O$_3$composite. It appeared that $Al_2$O$_3$reinforced composites was more difficult to hot deform.

  • PDF

Wear and Mechanical Properties of B4C/Al6061 Composites Fabricated by Stir Casting and Rolling Process (교반주조 및 압연공정으로 제조된 B4C/Al6061 금속복합재료의 마모 및 기계적 특성 연구)

  • Lee, Donghyun;Oh, Kanghun;Kim, Junghwan;Kim, Yangdo;Lee, Sang-Bok;Cho, Seungchan
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.241-246
    • /
    • 2020
  • In this study, aluminum (Al) alloy matrix composites in which B4C particles were uniformly dispersed was manufactured through stir casting followed by hot rolling process. The microstructure, mechanical properties, and wear resistance properties of the prepared composites were analyzed. The composite in which the 40 ㎛ sized B4C particles were uniformly dispersed increased the tensile strength and improved wear performance as the volume ratio of the reinforcement increased. In the case of the 20 vol.% composite, the tensile strength was 292 MPa, which was 155% higher than that of the Al6061. As a result of the wear resistance test, the wear width and depth of the 20 vol.% B4C/Al6061 composites were 856 ㎛, and 36 ㎛, and the friction coefficient was 0.382, which were considerably superior to Al6061.

Statistical Life Prediction of Fatigue Crack Growth for SiC Whisker Reinforced Aluminium Composite (SiC 휘스커 보강 Al6061 복합재료의 통계학적 피로균열진전 수명예측)

  • 권재도;안정주;김상태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.475-485
    • /
    • 1995
  • In this study, statistical analysis of fatigue data which had obtained from respective 24 fatigue crack, was examined for SiC whisker reinforced aluminium 6061 composite alloy (SiC$_{w}$/A16061) and aluminium 6061 alloy. SiC volume fraction in composite alloy is 25%. The analysis results stress intensity factor range and 0.1 mm fatigue crack initiation life for SiC$_{w}$/A16061 composite & A16061 matrix are the log-normal distribution. And regression analysis by linear model, exponential model and multiplicative model were performed to find out the relationship between fatigue crack growth rate(da/dN) and stress intensity for find out the relationship between fatigue crack growth rate(da/dN) and stress intensity factor range(.DELTA.K) in the SiC$_{w}$/A16061 composite and examine the applicability of Paris' equation to SiC$_{w}$A16061 composite. Also computer simulation was performed for fatigue life prediction of SiC$_{w}$/A16061 composite using the statistical results of this study.udy.

A Theoretical Study on Interface Characteristics of SiC Particulate Reinforced Metal Matrix Composite Using Ultrasonics (초음파를 이용한 입자강화 금속복합재료의 계면특성에 관한 이론적 연구)

  • Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.4
    • /
    • pp.9-17
    • /
    • 1994
  • It is well recognized recently that ultrasonic technique is one of the most widely used methods of nondestructive evaluation to characterize material properties of nonconventional engineering materials. Therefore it is very important to understand physical phenomenon on propagation behavior of elastic wave in these materials, which is directly associated with ultrasonic signals in the test. In this study, the theoretical analysis on multi-scattering of harmonic elastic wave due to the particulate with interface between matrix and fiber in metal matrix composites(MMCs) was done on the basis of Lax's quasi-crystalline approximation and extinction theorem. SiC particulate (SiCp) reinforced A16061-T6 composite material was chosen for this analysis. From this analysis, frequency dependences of phase velocity and amplitude attenuation of effective plane wave due to the change of volume fraction of SiC particulate were clearly found. It was also shown that the interface condition between matrix and fiber in MMCs gives a direct effect on the variation of phase velocity of plane wave in MMCs.

  • PDF