• 제목/요약/키워드: 알루미늄 합금 피스톤

검색결과 6건 처리시간 0.019초

알루미늄 합금 실린더 블럭을 적용한 가솔린 엔진의 냉각계 개발 (The development of cooling system in the gasoline engine with the aluminum alloy cylinder block)

  • 한덕주;민병순;최재권
    • 오토저널
    • /
    • 제17권3호
    • /
    • pp.11-18
    • /
    • 1995
  • 본 논문에서는 주철 라이너를 삽입한 알루미늄 블럭 엔진 개발과정에서 주조 불량이 발생하였을때, 냉각계에 일어나는 제반 현상을 분석하고, 이를 해결해 나가는 과정을 기술하였다. 이를 위하여 주철 블럭과 알루미늄 블럭을 장착한 엔진의 피스톤 온도와 블럭의 열유속, 열정산을 측정하였다. 측정한 결과는 다음과 같다. 1. 알루미늄 블럭 제작시 주철 라이너와 알루미늄 블럭 사이에 공기층이 크거나, 용탕 충진이 불완전한 주조 불량이 발생하면 열접촉 저항이 커져 엔진 열전달 경로에 큰 영향을 준다. 2. 알루미늄 블럭 제작시 주조 불량이 발생하면 피스톤에서 라이너로의 전열량이 줄어듦에 따라 냉각수로의 전열량은 감소하는데, 6,000rpm, 전부하에서 알루미늄 블럭의 출력 대비 냉각수로의 방열량의 비는 38.3%이고, 주철 블럭은 44.1%이다. 3. 알루미늄 블럭 제작시 주조 불량이 발생하면, 피스톤 온도가 15-20.deg.C 정도 상승하여 피스톤 손상을 유발시킬 수 있다. 4. 알루미늄 블럭의 주조가 완벽하게 되어 주철 라이너와 알루미늄 몸체 사이에서의 열접촉저항이 없어지면, 스토로크 방향에 따른 금속면 온도 분포가 균일하게 된다. 5. 실린더 라이너의 주조상태 개선없이 오일젯을 사용한 결과 피스톤의 온도를 만족할 만한 수준으로 감소시켰다. 6. 6000rpm, 전부하에서 오일젯 적용시 출력 대비 냉각수로의 방열량의 비가 38.3%에서 36.2%로 감소하고, 출력대비 오일로의 방열량의 비는 9.6%에서 11.2%로 증가한다. 7. 오일젯 작용시 오일 펌프의 용량 증대와 오일 쿨러의 장착이 필수적이다.

  • PDF

알루미늄 합금 피스톤과 스틸 단조 피스톤의 내구성능에 관한 실험적 연구 (An Experimental Study on Durability Performance of Aluminum Alloy Piston and Steel Forging Piston)

  • 김현철;이종인;박종호
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.54-59
    • /
    • 2004
  • The goal of this research is to confirm reliable durability and evaluate the engine performance of the current aluminum alloy piston and the newly developed steel forging piston. For such purpose, the test environment was built with 2.91 target engine mounted on the engine dynamometer and additional exhaust gas analysis system. Using the test environment, engine performance test was conducted, and durability test was also conducted using a dedicated piston durability test equipment for 400,000 km. As a result of the experiment, similar durability was appeared for both aluminum piston and steel piston, and the engine output power and torque are slightly reduced because of $158\%$ heavier weight of the steel piston compare to the aluminum alloy piston.

분말단조법에 의한 알루미늄 합금 피스톤 개발 (The Development of Aluminium Alloy Piston by Powder Forging Method)

  • 강대용;박종옥;김길준;김영호;조진래;이종헌
    • 한국정밀공학회지
    • /
    • 제17권8호
    • /
    • pp.87-93
    • /
    • 2000
  • Powder Forging technology is being developed rapidly because of its economic merits and the possibility of lightening parts by replacing steel parts with aluminum ones especially in automotive parts manufacturing. Recently Powder Forging process is widely used for manufacturing primary mechanical parts as a combined technology of P/M and precision hot forging. This paper describes the process conditions for the powder forging of Aluminium alloy piston. For example powder alloy design preform design by FEM simulation cold of compaction of specimens and preform sintering of preform powder forging process. The characteristics of sintered compaction of specimens and preform sintering of preform powder forging process. The characteristics of sintered products and final forged piston ones are investigated with tensile strength hardness ductility and so on. Eventually its results prove the improve mechanical properties of the piston produced by powder forging.

  • PDF

공기 압축기의 피스톤용 알루미늄 합금 소재 개발 (Development of Aluminium Alloy for Piston of Air Compressor)

  • 김순경;김문경
    • 한국기계가공학회지
    • /
    • 제7권1호
    • /
    • pp.9-16
    • /
    • 2008
  • It is important not only to reduce the casting defects of piston but also to improvement in the mechanical properties(hardness) of piston for the air compressor. The blow hole is typical casting defects in the conventional cast of aluminium alloy(AC8A-T6) piston. Because of the heat treatment method, mechanical properties of the aluminium alloy for piston was decided on the heat treatment method and cycle. Therefore, we tested on the development of mechanical properties and on the casting defects of piston for the air compressor in accordance with the heat treatment and casting condition. After the heat treatment and casting was carried out as several times, and was compared with the imported piston. As a result of several investigations; microstructure, hardness and casting defects of piston was changed under the influence of the heat treatment and casting method. When the cooling rate was controlled and the uni-cast method used, it bas the same mechanical properties and microstructure.

  • PDF

알루미늄 주조/단조 공정을 이용한 자동차용 에어컨 컴프레서 피스톤의 생산에 관한 연구 (A Study on the Production of a Compressor Piston for an Automobile Air-Conditioner using Aluminum casting/Forging)

  • 이성모;왕신일;김효량;배원병
    • 한국정밀공학회지
    • /
    • 제17권8호
    • /
    • pp.53-59
    • /
    • 2000
  • In this study aluminum casting experiments are carried out to reduce the grain size of a cast preform and to spheriodize its dendritic structure by adding Ti+B and Zr and to modify flaked eutectic silicon by adding Sr, And a finite element simulation is performed to determine an optimal configuration of the cast preform to be used in forging of a compressor piston for an automobile air-conditioner. When 0.15% Ti+B Zr and 0.05% Sr are added respectively into the molten aluminum alloy the finest grain in casting of the preform is obtained. It is confirmed that the optimal configuration of the cast preform predicted by FEM simulation is very useful for forging the compressor piston. After forging the cast preform of the compressor piston. the microstructure and the hardness of the cast preform is compared with those of the cast/forged product.

  • PDF

컵형상 분말단조품의 예비성형체 형상에 따른 단조효과에 관한 연구 (A Study on Forging Effect of Cup-Shaped Powder Forging Product According to the Shape of Preforms)

  • 박종옥;김영호;조진래;이종헌
    • 한국정밀공학회지
    • /
    • 제17권11호
    • /
    • pp.63-68
    • /
    • 2000
  • The purpose of this paper is to compare the forging effects according th the shape of preforms of cup shaped powder forging product, and extend the application of powder forging technology to more complicated cup-shaped products like pistons. In order to this, preforms are provided by compacting, sintering, and machining in various shapes, then forged to final shape of products. The workability for sintered aluminium powder material is examined. Density and strain loci of forged products are compared, and the most effective shape of preform is proposed. The preform for a piston of 50mm in diameter is provided and hot forged to final product.

  • PDF