• Title/Summary/Keyword: 알루미늄 판

Search Result 201, Processing Time 0.028 seconds

Collapse Analysis of Ultimate Strength for the Aluminium Stiffened Plate subjected to Compressive Load (알루미늄 보강판의 압축 최종강도 붕괴 해석)

  • Park, Joo-Shin;Ko, Jae-Yong;Kim, Yun-Young
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.825-831
    • /
    • 2007
  • The use of high-strength aluminum alloys for ship and offshore structure generally has many benefits compared to the structural steels. These materials are used widely in a variety of fields, especially in the hull and deck of high speed craft, box-girder of bridges, deck and side plates of offshore structure. The structural weight can be reduced using these aluminum structure, which can enable high speed The characteristics of stress-strain relationship of aluminum structure are fairly different from the steel one, because of the influence of Heat Affected Zone(HAZ) by the welding processing. The HAZ of aluminum is much wider than that of steel with its high heat conductivity. In this paper, the ultimate strength characteristics of aluminum stiffened panel subjected to axial loading, such as the relationship between extent of HAZ and the behavior of buckling/ultimate strength, are investigated through the Finite Element Analysis with varying its range.

Impact Behavior of Fiber/Metal Laminates (FMLs) under Low Velocity (섬유/금속 적층판의 저속 충격 거동)

  • Shi, Yu;Kim, Seung-Hyun;Kim, Byung-Sun;Song, Jong-Il
    • Composites Research
    • /
    • v.23 no.1
    • /
    • pp.8-16
    • /
    • 2010
  • The Fiber/Metal Laminates (FMLs) have been developed as a new composite material for aerospace application to reduce weight and improve damage tolerance. In this study, firstly FMLs were manufactured and the tensile test was performed to investigate the mechanical properties of FMLs. Furthermore, impact behavior of the low velocity on FMLs which consisted of different types of aluminum or fiber/epoxy layers was tested by the drop weight impact tester based on the different impact energy conditions. The load-time and energy-time curves were employed to evaluate the impact performance of different specimens. Moreover, finite element analysis (FEA) was also performed to simulate the tensile test and impact behavior of FMLs under the same conditions with the tests and good agreements have been obtained between the FEA predictions and experimental results.

Increase heat dissipation efficiency of Al plate according to surface roughness treatment by sandpaper or sandblast (사포, 샌드블라스트로 표면 거칠기 처리에 따른 알루미늄 판의 방열 효율 증대)

  • Lee, Dong-Hee;Lee, Jong-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.170-178
    • /
    • 2019
  • Recently, as the interest in energy savings has increased, there has been increasing use of LED lighting, which is an eco-friendly device that replaces high energy consuming fluorescent lamps and incandescent lamps. In the case of a high output LED, however, the life time is shortened due to deterioration caused by heat generation. As a solution to this problem, this paper evaluated the LED life extension effect by increasing the convective heat transfer coefficient of the heat sink surface for LED packaging. A roughing process was carried out using sandpaper and sand blasting. The changes in surface roughness and surface area after each surface treatment process were evaluated quantitatively and the convective heat transfer coefficient was measured. When sandblasting and sandpaper were used to roughen the aluminum surface, a higher convection heat transfer coefficient was obtained compared to the untreated case, and a high heat dissipation efficiency of 82.76% was obtained in the sandblast treatment. Therefore, it is expected that the application of heat dissipation to the heat sink will extend the lifetime of the LED significantly and economically by increasing the heat efficiency.

Study on Material Fracture and Debris Dispersion Behavior via High Velocity Impact (고속충돌에 따른 재료 파괴 및 파편의 분산거동 연구)

  • Sakong, Jae;Woo, Sung-Choong;Kim, Jin-Young;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1065-1075
    • /
    • 2017
  • In this study, high velocity impact tests along with modeling of material behavior and numerical analyses were conducted to predict the dispersion behavior of the debris resulting from a high velocity impact fracture. For the impact tests, two different materials were employed for both the projectile and the target plate - the first setup employed aluminum alloy while the second employed steel. The projectile impacts the target plate with a velocity of approximately 1 km/s were enforced to generate the impact damages in the aluminum witness plate through the fracture debris. It was confirmed that, depending on the material employed, the debris dispersion behavior as well as the dispersion radii on the witness plate varied. A numerical analysis was conducted for the same impact test conditions. The smoothed particle hydrodynamics (SPH)-finite element (FE) coupled technique was then applied to model the fracture and damage upon the debris. The experimental and numerical results for the diameters of the perforation holes in the target plate and the debris dispersion radii on the witness plate were in agreement within a 5% error. In addition, the impact test using steel was found to be more threatening as proven by the larger debris dispersion radius.

Evaluation of Relative Emission of Image Plate by Using Relative Sensitivity in Computed Radiography System (컴퓨터 방사선영상시스템에서 비감도를 이용한 영상판의 상대적 발광량 평가)

  • Seoung, Youl-Hun
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.355-361
    • /
    • 2014
  • The aim of the present study was to evaluate a relative emission of image plate (IP) in computed radiography (CR) system by using relative sensitivity in film/screen methods. The characteristic curve was obtained by using the uniform aluminum 11-step wedge penetrometer. X-ray exposure factors on radiographic digital image were 50 kVp, 10 mAs. We adjusted zero of all parameter of algorithms (MUSICA) so proximate to raw data and applied to 200 of exposure class. Modeling on relative emission of IP are used IP without fading time and IP after 4 hours, 8 hours, 12 hours, 24 hours in the respective storage after X-ray exposure. The results of this study showed that the sensitivity point density at the measuring of relative sensitivity in CR was suited pixel values of the 2000 easy to relatively measure the characteristic curve and when relative sensitivity is decreased, the amount of light emitted from the image signal for generating was also decreased. In conclusion, the proposed method of measurement of relative sensitivity can be utilized to evaluate the quantity of relative emission of IP in CR system.

Analysis of Nonlinear Vibration for Hybrid Composite Plates (혼합적층판에 대한 비선형 진동해석)

  • 이영신;김영완
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2306-2314
    • /
    • 1992
  • Using the Lagrangian equation, nonlinear vibration analysis of laminated hybrid composite plates is carried out. The effects of stacking sequences, aspect ratios, number of modes, number of layers and various elastic properties on nonlinear vibration are investigated. The presence of bending-extension coupling in antisymmetric plates yields a second power term in addition to a cubic nonlinear term in governing differential equation of motion. In the other symmetric case, this second term vanishes. The fundamental frequency of analytic results are compared with that of ABAQUS FEM analysis. For nonlinear vibration of antisymmetric unimaterial plate, the result of reference is presented for comparison with this result.

Detection of a Crack on a Plate by IDT Type Lamb Wave Sensors (IDT형 Lamb 파 센서에 의한 판상의 균열 검출)

  • Kim, Jun-Ho;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.8
    • /
    • pp.483-490
    • /
    • 2010
  • In this paper, an Inter-Digital Transducer (IDT) type Lamb wave sensor is proposed to estimate the geometry and number of cracks on a plate structure, and its validity is checked through experiments. This IDT type sensor is more readily controllable than conventional patch type piezoelectric sensors to modify its operation frequency and directionality by altering its finger patterns. In this work, omni-directional annular IDT and highly directional rectangular IDT sensors are designed and fabricated. The IDT sensors are used to diagnose the length, number and orientation of cracks on an aluminum plate by measuring the amplitude and time of flight of Lamb waves. The results are analyzed to discuss the efficacy of the IDT sensors.

Acoustic Emission Characteristics and Fracture Behaviors of GFRP-Aluminum Honeycomb Hybrid Laminates under Compressive and Bending Loads (GFRP-알루미늄 하니컴 하이브리드 적층판의 압축 및 굽힘 파괴거동과 음향방출해석)

  • Lee, Ki-Ho;Gu, Ja-Uk;Choi, Nak-Sam
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.23-31
    • /
    • 2009
  • This paper investigated acoustic emission (AE) characteristics in association with various fracture processes of glass fiber reinforced plastic skin/ aluminum honeycomb core (GF-AH) hybrid composites under compressive and bending loads. Various failure modes such as skin layer fracture, skin/core interfacial fracture, and local plastic yield buckling and cell wall adhesive fracture occurring in the honeycomb cell wall were classified through the fracture identification in association with the AE frequency and amplitude analysis. The distribution of the event-rate in which it has a high amplitude showed a procedure of cell wall adhesive fracture, skin/core interfacial debonding and fiber breakage, whereas distribution of different peak frequencies indicated the plastic deformation of aluminum cell wall and the friction between honeycomb walls. Consequently, the fracture behaviors of GF-AH hybrid composites could be characterized through a nondestructive evaluation employing the AE technique.

Contrast Experiment and Precipitate Analysis in Age-Hardening Aluminium-4% Copper System (시효경화(時效硬化) 알루미늄-4%동(銅) 계(系)에서의 전자현미경(電子顯微鏡)에 의한 콘트라스트 실험(實驗) 및 석출물(析出物) 분석(分析))

  • Lee, Jeong-Yong
    • Applied Microscopy
    • /
    • v.19 no.1
    • /
    • pp.89-108
    • /
    • 1989
  • 알루미늄-4%동 계에서의 ${\theta}$${\theta}'$ 석출물과 석출물/기지 계면 전위를 투과전자현미경상으로 관찰하고 콘트라스트 실험 및 석출물 분석으로 석출물/기지 계면의 정합성과 여러 전위들의 Burgers 벡타를 규명하였다. 실험 결과, 변형장은 정벽면에 수직으로 되어 있고, 판상의 ${\theta}'$ 석출물은 {100}형 정벽면을 지니고 있었다. ${\theta}'$판 주위의 전위는 정벽면에 수직인 Burgers 벡타를 지닌 칼날전위였다. 그리고, 석출물과 기지 사이의 접합변형을 작게하기 위한 계면전위의 Burgers 벡타는 a<100>과 a/2<100>형이었다. 또한 Hornbogen의 예견과 일치하는 사실로, ${\theta}'$의 석출물의 끝부분에서 ${\theta}$상이 핵생성을 하는 사실을 발견하였다.

  • PDF

Study of dynamic behavior of aluminum extruded panels (알루미늄 압출판의 동적 거동 예측을 위한 해석적 연구)

  • Lee, Jun-Heon;Kim, Dae-Yong;Kim, Bum-Soo;Kim, Kwan-Ju
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.729-733
    • /
    • 2012
  • Frame structures of High speed train are constructed from corrugated panel and aluminum extruded panel, which have high bending stiffness. Transmission loss of those panels, however, is less satisfactory than other panels with same mass per unit area. Therefore, this study predicted transmission loss of aluminum extruded panels using Finite element method. Specifically, we modeled acoustic cavity above a radiation surface and analyzed correlation between T-slot and transmission loss. Moreover, we examined the effect of boundary condition changes of the structure on transmission.

  • PDF