• 제목/요약/키워드: 알루미늄 연소

검색결과 93건 처리시간 0.027초

알루미늄 함량에 따른 로켓보조추진탄용 추진제 특성 (Propellant Characteristics used for a Rocket-Assisted Projectile with Aluminium Contents)

  • 정재윤;최성한
    • 한국추진공학회지
    • /
    • 제23권5호
    • /
    • pp.60-66
    • /
    • 2019
  • 본 논문은 알루미늄 함량 변화에 따른 로켓보조추진탄(RAP) 용 추진제의 공정특성(점도), 기계적 물성, 연소특성, 지상 및 비행시험 결과에 관하여 기술하였다. 알루미늄 함량이 증가되면 초기점도는 감소하고 점도 build-up은 빨라지며 연소속도 및 압력지수가 감소하는 것을 확인하였다. 지상연소시험에서는 알루미늄이 10 wt% 함유된 RAP이 알루미늄이 2 wt%, 18 wt% 함유된 RAP에 비해 총역적이 약 5% 높았으며, 이론성능 대비 모터 효율은 알루미늄이 18 wt% 함유된 조성이 85.6%로 가장 낮았다.

알루미늄 입자 연소 지배인자의 민감도 해석 (Parametric Studies on the Sensitivity of Single Isolated Aluminum Particle Combustion Modeling)

  • 이상협;고태호;양희성;윤웅섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.321-327
    • /
    • 2010
  • 마이크로 크기의 단일 알루미늄 해석을 위한 간단한 모델을 작성하고, 현상의 주요 파라메터를 도출하는 연구를 수행하였다. 금속 입자의 연소는 점화와 준정상상태의 연소 단계로 구성하였고, 각 단계는 액적 연소의 경우와 유사하게 보존 및 이송 방정식들을 사용하여 모사되었다. 모델은 기존의 실험 데이터와의 엄격한 비교를 통해 신뢰성을 검증하였고, 이 과정에서 현상의 주요 변수를 도출하여 그 영향을 평가하였다. 주요 변수로는 초기 입자크기, 산화 피막 두께, 대류 열전달의 유무, 외기온도, 압력 등이 선정되었고, 간단한 열역학적 모델임에도 불구하고 정량적으로 실험 데이터와 유사하게 각각의 파라메터의 영향을 평가할 수 있음을 확인하였다.

  • PDF

알루미늄 분말 연소를 위한 고체 화학수소화물 기반 수소 점화 시스템 (Solid Chemical Hydride-Based Hydrogen Ignition System for Aluminum Powder Combustion)

  • 박길수;김태규
    • 한국추진공학회지
    • /
    • 제23권3호
    • /
    • pp.88-95
    • /
    • 2019
  • 수소 토치 점화 시스템은 순수한 알루미늄을 이용하여 점화가 가능하고 점화 방법이 간단해 알루미늄 연소 시스템으로 많이 사용되고 있다. 하지만 기존의 수소 토치 점화 시스템은 수소 공급을 위해 고압의 수소탱크가 필요해 무게가 무거워지는 단점이 있다. 이러한 문제를 해결하기 위해 본 연구에서는 고체 화학수소화물인 $NaBH_4$를 이용한 수소 점화 시스템을 설계하였다. $NaBH_4$는 약 $500^{\circ}C$에서 열분해가 시작되고 수소가 발생한다. $NaBH_4$ 열분해 특성에 영향을 미치는 변인들을 분석하고, $NaBH_4$ 기반 수소 점화 시스템을 이용해 알루미늄 연소 실험을 수행하여 실제 시스템 적용 가능성에 대해 검증 하였다.

고체 추진제 로켓 노즐 내부의 2상 유동 및 마모 특성에 관한 연구 (Study of two phase flow and erosion characteristic in SRM nozzle)

  • 김완식;조형희;배주찬
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1998년도 제11회 학술강연회논문집
    • /
    • pp.32-32
    • /
    • 1998
  • 고체 추진제 로켓의 연소시에 발생되는 산화 알루미늄(A1$_2$O$_3$) 입자는 로켓 추진 노즐에서 팽창과정의 효율을 저하시키는 요소가 되며, 이러한 비효율성은 연소 가스와 입자간의 비평형 상태 효과와 기본적인 속도와 열적 차이에 의해서 발생된다고 보고되었다. 또한 연소시 발생된 산화 알루미늄 입자는 높은 열과 큰 운동량을 가지고 로켓 노즐 내부를 유동하게 되며, 매우 많은 량이 짧은 시간에 고온 고속으로 노즐 벽면이나 기타 구조물에 충돌 및 점착하기 때문에 로켓 노즐내의 표면이 손상을 입게 되고, 로켓의 방향 제어 및 조정 안정성이 저하되며, 구조적인 강도가 약화 될 수 있다. 또한 산화 알루미늄 액적들의 경우 노즐 벽면에 고착되게 되면 로켓의 중량 증가로 인해서 추력의 손실을 초래할 수 있다. 따라서 이러한 연소 부산물들의 운동 경로와 충돌 위치 및 표면에서의 충돌량과 그리고 충돌에 따른 마모량 및 점착 그리고 열전달 특성을 예측하는 것이 필수적이다.

  • PDF

복합재 연소관의 쐐기형 체결부 구조 해석 (The Structural Analysis of Wedge Joint in Composite Motor Case)

  • 황태경;도영대;김유준
    • 한국추진공학회지
    • /
    • 제4권3호
    • /
    • pp.64-73
    • /
    • 2000
  • 본 체결부는 필라멘트 와인딩으로 제작된 연소관, 복합재 쐐기 그리고 알루미늄 내부 링으로 구성된다. 여기서 연소관은 헬리컬 층과 후프 층으로 이루어져 있다. 이러한 복합재 연소관의 성능 향상을 위해 체결부의 설계 변수에 따른 유한 요소 응력 해석이 수행되었다. 이때 접착 층을 난-소성 거동 재질로, 쐐기부와 알루미늄 링간의 접촉 상태는 ABAQUS의 접촉 표면 요소로 모사 되었다. 또한 해석 결과의 정확성을 입증하기 위해 내압에 의한 체결부 밀림 변위와 연소관 몸체의 원주 방향 변형도를 수압 시험과 비교하였다. 쐐기와 알루미늄 링간의 완벽 접착은 쐐기와 연소관간의 접착 층에 높은 전단 변형을 발생시켜 체결부 조기 파괴의 원인이 된다. 쐐기와 알루미늄 링간의 미 접착은 쐐기와 연소관사이의 접착 층 전단 응력을 감소시키는 반면 내부 알루미늄 링의 미끄러짐 거동으로 체결부 복합재의 반경 방향 변형을 증가시켜 파괴를 유발하였다. 그러나 쐐기부와 알루미늄 링간의 미접착 상태에서, 원주 방향 와인딩으로 체결부 지점을 보강한 경우, 알루미늄 링의 미끌어짐이 억제되어 체결부 지점의 복합재 원주 방향 변형값이 감소했다.

  • PDF

알루미늄 입자 크기에 따른 파라핀 혼합연료의 연소 특성 연구 (A Study on Combustion Characteristics of Paraffin Blended Fuel on Aluminum Particle Size)

  • 고수한;한승주;류성훈;김진곤;문희장;김준형;고승원
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.791-796
    • /
    • 2017
  • 본 연구에서는 알루미늄 입자 크기에 따른 파라핀 혼합연료의 연소 특성에 관한 실험을 수행하였다. 평균 입도 100 nm 및 $8{\mu}m$ 크기의 알루미늄 입자와 Sasol사의 마이크로크리스탈린 파라핀 왁스(Sasol 0907)를 이용하여 연소실험을 수행하였고 순수 파라핀과 알루미늄 입자 5 wt%를 첨가한 파라핀 혼합연료의 후퇴율과 압력선도, 특성배기속도 등을 비교하였다. 마이크로 입자의 첨가는 산화제 유속이 증가할수록 후퇴율을 향상시켰으나 나노 입자의 첨가는 후퇴율이 감소하는 경향을 보였다.

  • PDF

고 에너지 레이저를 통한 알루미늄-산소 연소현상에 대한 분광분석 (The spectroscopic study of chemical reaction of laser-ablated aluminum-oxygen by high power laser)

  • 김창환;여재익
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.608-611
    • /
    • 2011
  • 이차 추진제로 많이 쓰이는 알루미늄을 고출력 레이저를 이용하여 공기 중의 산소와 반응시켜 발생되는 rich 및 stoichiometric 상태의 알루미늄-산소 연소 현상에 대해 레이저 분광분석법을 이용하여 연구하였다. 7ns의 펄스 주기와 1064nm의 주파수를 가진 Q-switched Nd:YAG 레이저로 40 - 2500mJ의 에너지가 공급되었으며, 플라즈마 빛은 echelle 회절 분광기와 ICCD 카메라로 감지하였다. 레이저 분광분석을 통하여 연료인 알루미늄과 산화제인 산소의 원자 신호를 얻었을 뿐만 아니라, 현상이 일어나는 환경인 플라즈마 온도와 전자밀도가 계산되었다. 특정 전자 밀도비 비교를 통하여, 고출력 레이저를 통해 일어나는 알루미늄과 산소의 연소 및 폭발 현상 변화에 대한 분석이 가능하다는 것에 본 논문의 중요성이 있다.

  • PDF

수중추진을 위한 해수반응성 고체추진제의 연소특성에 관한 연구 (Study on combustion characteristics of seawater-reactive solid propellant for underwater propulsion)

  • 박길수;김태규
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.128-130
    • /
    • 2017
  • 수중추진을 위한 고체추진제로 알루미늄 분말의 수반응성을 높이기 위하여 $NaBH_4$를 첨가하였다. 알루미늄 분말은 $NaBH_4$의 첨가량에 따라 다른 연소특성을 보였다. $NaBH_4$를 첨가하였을 때 끓는점보다 훨씬 낮은 온도에서도 물과 반응하여 연소되었다. 본 연구에서 $NaBH_4$는 Al 분말과 증기 반응을 촉진시키는 효과적인 첨가제임을 확인하였다.

  • PDF

플라즈마를 이용한 분말형 금속 연료 알루미늄의 점화 특성 (Ignition Characteristics of Aluminum Metal Powder Fuel with Thermal Plasma)

  • 이상협;임지환;윤웅섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.737-744
    • /
    • 2011
  • 탄화수소 계열의 점화원과 달리 선행 연구된 스팀 플라즈마 점화기를 이용한 알루미늄 분말의 지속 연소 성공을 바탕으로, 고온의 플라즈마를 이용한 알루미늄 분말의 점화 특성을 알아보기 위해 산화제가 없는 환경을 조성하여 점화 특성 확인 실험을 수행하였다. 아르곤 플라즈마를 이용하여 이전의 연소 실험과 동일한 4500 K의 온도 조건 및 이송 가스를 이용한 입자 공급 조건을 조성하여 실험을 수행하였으며, 플라즈마의 온도는 방출분광법을 사용하여 측정하였고 점화 특성은 SEM 촬영과 EDS 분석을 통해 비교 분석하였다. 고온의 플라즈마 제트 내부를 통과한 알루미늄 분말은 탄화수소 계열의 점화원과 다르게 급격한 기화로 인한 점화 촉진 효과를 확인 할 수 있었다.

  • PDF

알루미늄 입자가 다량 함유된 고폭약의 데토네이션 특성에 대한 수치적 연구 (Numerical Simulation for Detonation Characteristics of Heavily Aluminized High Explosives)

  • 김우현;곽민철;여재익
    • 한국추진공학회지
    • /
    • 제21권5호
    • /
    • pp.10-18
    • /
    • 2017
  • 알루미늄 입자들이 함유된 고폭약의 비정상 데토네이션 전파속도에 대하여 수치 해석을 수행하였다. 알루미늄 입자의 점화와 연소는 고폭약에 비해 상대적으로 긴 시간이 요구되기 때문에, 알루미늄 입자연소에 의한 에너지 발산은 고폭약의 데토네이션 후방에서 이루어진다. 이러한 비정상 데토네이션에 대한 수치해석은 기체상과 균일하게 분포된 고체 입자와의 질량, 운동량, 에너지 교환을 다루는 이종매질 이론을 이용한다. 알루미늄 입자가 함유된 고폭약의 데토네이션 전파에 대한 수치 해석은 폭약 HMX에 대하여 수행되었으며, 5~25%의 알루미늄 함량과 0.5, 7, $15{\mu}m$의 알루미늄 입자크기에 대한 수치 해석 결과와 실험 결과를 비교하여 검증하였다.