• 제목/요약/키워드: 알루미늄 연소

검색결과 93건 처리시간 0.026초

발파 후 2차 연소의 원인 (The Cause of Secondary Explosion after Blasting)

  • 이영호;이응소;정천재;윤종화
    • 화약ㆍ발파
    • /
    • 제21권1호
    • /
    • pp.85-94
    • /
    • 2003
  • 발파후에 2차연소 또는 폭발(이하, 2차연소라 한다. )이 일어났다는 사실은 폭약이 폭발후에 어떤 가연성가스가 발생하고 그 가연성가스가 잔존하는 폭발열 또는 기타의 점화원에 의해 연소되었음을 의미한다. 폭약이 폭발하였을 때, 발생 가능한 가연성물질은 유리탄소, 일산화탄소, 수소 등으로 추정할 수 있는데 실험결과에서는 가연성물질의 주성분이 수소인 것으로 나타났다. 본 연구에서는 에멀존계 함수폭약이 산소평형, 알루미늄함량, 알루미늄형태와 크기 그리고 포장지의 두께에 따라 수소가 발생되는 양을 가스크로마토그라피를 이용하여 측정하였다. 상기의 열거한 요인들은 모두 수소발생량과 관계가 있는데, 이중에서도 가장 중요한 요인은 산소평형과 알루미늄의 함량인 것으로 나타났다. 한 예로 알루미늄이 15%가 포함되고 산소평형이 -10인 에멀존계 함수폭약은 폭발후에 19.4%의 수소를 함유하고 있는 후가스를 발생시켰으며 이 가스를 포집하여 공기중에 방출시키면서 성냥불을 가까이 하였더니 연소가 되었다. 따라서 에너지를 높이기 위하여 알루미늄의 함량을 높이고 산소평형을 지나치게 마이너스로 설계한다면, 2차연소는 언제든지 발생할 가능성이 있다고 판단된다. 알루미늄의 함량을 가능한 적게, 산소평형을 가능한 0에 가깝게 설계해야 만이 2차연소 현상을 방지할 수 있을 것이며 ㄸ한 최적의 설계뿐만이 아니라 정확한 제조와 품질검사도 2차연소 현상을 방지하는데 중요한 몫을 할 것으로 판단된다.

알루미늄 분말 연소시험을 위한 장치 개발 (Development of combustion test device for study of aluminum powder combustion)

  • 황용석;이지형;이경훈;김광연;이성웅;여태민
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.548-553
    • /
    • 2011
  • 알루알루미늄 분말과 물의 연소 특성을 연구하기 위한 장치를 고안하였다. 알루미늄 분말의 점화를 포함한 연소특성은 초기온도, 압력, 당량비등에 의존하게 되므로 이러한 인자를 변화시켜 연소환경을 적응시킬 수 있는 장치를 설계하였다. 연소 시험 장치는 메탄 연소기, 물공급장치, 알루미늄 분말 정량 공급장치, 선형 형태의 연소기 및 제어장치로 구성되어 있다. 각각의 장치들은 필요한 물질을 정량적으로 공급할 수 있는 기능을 가지고 있으며, 정해진 시험 과정에 따라 자동으로 제어될 수 있도록 설계되었다. 제작된 장치를 시운전하여 각 구성품이 정상작동하였을 때, 알루미늄 분말이 연소되는 것을 확인할 수 있었다.

  • PDF

단일 알루미늄 입자 연소 모델에 따른 2상 알루미늄 분말 연소장 시뮬레이션 (Numerical Analysis of Two-Phase Aluminum Dust Combustion according to Single Aluminum Particle Combustion Model)

  • 김상민;양희성;윤웅섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.460-466
    • /
    • 2010
  • 단일 알루미늄의 연소 모델을 사용하여 알루미늄 분말의 점화 과정에 대한 전산유체 해석 기법을 개발하였다. 유동의 계산은 Reynolds averaged Navier-Stokes식을 사용하였으며, $k-{\epsilon}$ 난류모델을 적용하였다. 입자는 Eulerian-Lagrangian 방법을 사용하여 유동과 독립적으로 계산을 수행하였으며 상용 전산유체해석 프로그램인 Fluent 6.3을 사용하여 해석을 수행하였다. 단일 모델에서 사용한 대류 및 복사 열전달, 표면이상반응, 알루미늄의 용융열을 입자 가열원으로 고려하였다. 같은 조건을 사용하여 단일 입자 모델 계산과 전산유체해석을 수행하였으며, 두 결과는 5% 이내로 잘 일치 하였다. 이를 통해 전산유체해석에서 알루미늄의 점화를 모사할 수 있음을 확인하였다.

  • PDF

물을 산화제로 하는 나노 알루미늄 분말 연소의 압력 민감도 실험 (Combustion of Nano-scale Aluminum and Liquid Water for Pressure Sensitivity)

  • 이상협;임지환;윤웅섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.476-482
    • /
    • 2010
  • 알루미늄은 많은 이점에도 불구하고 표면의 높은 용융점을 가지는 산화 피막 효과로 인해 원활하게 점화와 연소 반응이 일어나지 못하는 단점이 있다. 그런데 산화피막을 제거하는 방법은 매우 복잡하며 용이하지 않으므로 본 연구에서는 연소율은 압력에 비례한다는 원리를 이용하여 접근하였다. 연소 속도의 압력에 따른 민감도를 알기 위해 압력 용기를 설계하였고 아르곤 가스를 이용하여 80nm의 알루미늄 분말과 산화제인 증류수의 혼합물을 3, 5, 10 기압의 압력 조건에 따른 연소속도의 변화를 측정하고 해외의 연구와 비교 분석하였다.

  • PDF

열복사에 의한 단일 알루미늄 입자 점화-연소특성 측정 (Study on the Ignition and Burning Characteristic of Single Aluminum Particle with Thermal Radiation)

  • 임지환;윤웅섭;이도형
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.450-459
    • /
    • 2010
  • 고체추진제의 첨가제 또는 연료로써 주로 사용되는 알루미늄 단일 입자 연소시험 장비를 제작하고 연소 실험을 수행하였다. 산화 알루미늄으로 피복된 금속입자는 약 30~100 ${\mu}m$의 크기를 사용하였다. 단일 입자는 Electrodynamic Balance (EDB) 방법에 의해 공중 부양된 상태로, 중력에 의한 영향이 배제되어 금속입자 고정용 또는 측정용 장치들의 접촉에 의한 열손실을 제거시켜 실험 정확도를 높였다. Standard Hyperbolic Electrodynamic Levitator (SHEL) 내에서 부양된 입자에 $CO_2$ 레이저를 사용하여 점화시킨 후, 입자로부터 방사되는 열복사를 이용한 two wavelength pyrometry를 적용하여 알루미늄 입자 크기에 따른 연소시간, 평균 화염온도, 점화온도, 점화시간을 획득하였으며, 단일 알루미늄 입자의 점화-연소특성을 평가하였다.

  • PDF

Al 분말과 Water 혼합물의 연소특성 연구 (Combustion Characteristics of Al powder with Water Suspension)

  • 기완도;김광연;;조용호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.157-162
    • /
    • 2012
  • 미크론 크기의 알루미늄 분말과 물 혼합물의 기초 연소 특성 연구를 진행하였다. 대기압 환경에서 연소속도에 영향을 미치는 당량비와 혼합물 밀도를 변화시켜 알루미늄-물 혼합물의 연소 특성 연구를 진행하였다. 이를 바탕으로 고압 환경하에서의 알루미늄 분말과 물 혼합물에 대한 연소 특성을 연구하기 위한 장치를 설계하였다. 고압 환경에서 2~50기압 범위에서는 압력에 따른 연소속도의 영향은 나노 분말의 연소 특성과 동일하였으나, 50~70기압 범위에서는 급격한 연소속도 증가 현상이 관찰되었다. 당량비에 따른 실험에서는 산화제 과잉(eq=1.5) 조건에서는 50기압 이상에서는 연소가 진행되지 않았다.

  • PDF

마이크로 알루미늄 입자 함유량에 따른 파라핀 연료의 연소 특성 연구 (A Study on Combustion Characteristics of Paraffin Wax Fuel for Content of Micron-sized Aluminum Particles)

  • 박영훈;류성훈;한승주;문희장;김진곤;김준형;고승원
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.489-494
    • /
    • 2017
  • 본 연구에서는 마이크로 크기의 알루미늄 함유량에 따른 파라핀/알루미늄 연료의 연소특성 변화를 연구하였다. 마이크로 알루미늄 입자 첨가량에 따른 연소 특성을 파악하기 위해 순수 파라핀 왁스에 5 wt%, 10 wt%의 마이크로 알루미늄 입자를 혼합하여 연소 실험을 수행하였다. 연료는 평균 $8{\mu}m$ 크기의 알루미늄 입자와 Sasol사의 미정질 파라핀 왁스(Sasol 0907)를 이용하였고, 산화제는 기체산소를 적용하여 고체연료의 후퇴율과 압력선도, 연소효율의 변화 등을 조사하였다. 알루미늄 입자의 함량이 높을수록 고체연료의 후퇴율과 연소실 압력 및 연소 성능효율이 모두 증가함을 확인하였으나 증가폭은 미미함을 확인하였다.

  • PDF

나노-마이크로 알루미늄 혼합 입자의 공기와의 연소 모델링 (Combustion Modeling of Nano/Micro Aluminum Particle Mixture)

  • 윤시경;신준수;성홍계
    • 한국추진공학회지
    • /
    • 제15권6호
    • /
    • pp.15-25
    • /
    • 2011
  • 금속 연료 중 널리 사용되는 알루미늄의 연소 특성에 관하여 1차원 연소모델링을 제안하였다. 연소 모델링은 예열영역, 반응영역, 반응 후 영역, 세 영역으로 나누어 수행하였다. 또한 희박연소로 가정하여 단일 입자의 경우 입자크기와 당량비에 따른 화염속도, 나노와 마이크로 입자의 혼합물의 경우 혼합 비율에 따른 화염속도를 압력이 1기압 조건에서 계산하여 실험결과와 비교하였다. 단일입자의 경우, 입자의 크기가 작아질수록 화염속도가 빨라지고, 당량비가 낮아질수록 화염속도가 느려지는 현상이 관찰되었다. 나노와 마이크로 입자의 혼합물의 경우, 나노 입자의 함유량에 따라 화염속도는 빨라지며, 화염구조는 분리화염과 중첩화염이 나타남이 관찰되었다.

나노 알루미늄-물 혼합물의 수반응 연소 모델링 (Combustion modeling of nano aluminum particle and water mixture)

  • 윤시경;성홍계
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.472-475
    • /
    • 2010
  • 나노 알루미늄과 물의 연소 반응을 정상상태 층류 연소로 모델링하여 이론적 접근을 하였으며 압력에 따른 화염전파속도의 영향을 조사하였다. 물의 상변화에 따른 증발열을 고려하였으며 다양한 압력 영역(0.1MPa ~ 10MPa)에 대한 연소 특성을 살펴보았다. 모델링 영역을 1)물+알루미늄 2)증기+알루미늄 3)반응영역으로 나누었으며 영역의 방정식을 구성하고 화염속도에 대한 해석적 해를 구하였다. 입자크기에 따른 연소실 압력의 영향을 도출하여 시험결과와 비교, 분석 하였다.

  • PDF

라지스케일 칼로리미터에 의한 알루미늄 복합패널 외장재의 연소특성에 관한 연구 (A Study on the Fire Characteristics of Aluminum Composite Panel by Large Scale Calorimeter)

  • 윤정은;민세홍;김미숙;최승복
    • 한국화재소방학회논문지
    • /
    • 제24권2호
    • /
    • pp.89-96
    • /
    • 2010
  • 본 연구에서는 건축외장재로 많이 사용되고 있는 알루미늄복합패널의 화재위험성을 평가하기 위하여 외장재 실물 연소실험을 실시하였다. 그 결과 알루미늄복합패널의 빠른 화재확산을 보였으며, 이는 알루미늄 복합패널에 내장된 폴리에틸렌이 연소되면서 화염의 수직확산이 급격히 일어난 것이다. 본 실험에서 알루미늄복합패널의 최고 열방출률은 1,144kW로 나타났으며, 열전대에 의해 측정된 표면온도는 알루미늄의 용융점인 $660^{\circ}C$를 넘는 최고 $903.3^{\circ}C$ 이상 상승하였다. 그러므로 알루미늄복합패널의 화재는 상층으로의 급격한 연소확대나 개구부를 통한 내부로의 화재확산에 의한 큰 피해를 줄 수 있을 것으로 판단된다. 이러한 실물실험에서 얻어낸 결과는 향후 알루미늄복합패널의 모델링 구현과 비교함으로써 알루미늄복합패널의 화재 확산 예측에 적용 될 수 있을 것이다.