• Title/Summary/Keyword: 알루미늄 서브프레임

Search Result 12, Processing Time 0.022 seconds

Durability Design of a Passenger Car Front Aluminum Sub-frame using Virtual Testing Method (가상시험기법을 이용한 승용차 전륜 알루미늄 서브프레임 내구설계)

  • Nam, Jin-Suk;Shin, Hang-Woo;Choi, Gyoo-Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.368-375
    • /
    • 2012
  • Durability performance evaluation of automotive components is very important and time consuming task. In this paper, to reduce vehicle component development time and cost virtual testing simulation technology is used to evaluate durability performance of a passenger car front aluminum sub-frame. Multibody dynamics based vehicle model and virtual test simulation model of a half car road simulator are validated by comparisons between rig test results and simulation results. Durability life prediction of the sub-frame is carried out using the model with road load data of proving ground which can evaluate accelerated durability life. We found that the durability performance of the sub-frame is sufficient and it can be predicted within short time compared to rig test time.

Front Aluminum Subframe of High Level Vacuum Die-casting (고진공 다이캐스팅 공법 적용한 알루미늄 서브프레임 개발)

  • Cho, Young-Gun;Lim, Tae-Seong;Jang, Sang-Gil;Cho, Cheol-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.52-59
    • /
    • 2012
  • The subframe has been generally manufactured by using stamped steel material. Recently, automotive designers are considering aluminum as lightweight material. This paper describes the development process of an aluminum subframe which is made by high level vacuum die casting process, which is beneficial for minimizing gas contents and material properties. The weight of manufactured subframe is reduced by 4kg with the comparison of steel subframe. The aluminum subframe is packaged for the current vehicle layout and the imposed requirement is to attain a better structural performance that is evaluated in terms of mounting stiffness, noise and vibration, and endurance performance. The NVH evaluation results show that sound level is decreased by 8dB with the help of high roll-rod mounting stiffness as well as high structural modes.

Press Forming of Extruded Aluminum Profile for Automotive Parts (자동차 부품용 알루미늄 압출재의 프레스 성형기술)

  • Choi Young;Park Joon-Hong;Kang Myun-Gyu;Oh Kae-Hee;Park Sang-Woo;Yeo Hong-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.51-58
    • /
    • 2006
  • The necessities for heightening fuel efficiency as well as lightweight design, lead to an increase of the use of aluminum alloys in the automobile industry. Extruded aluminum profile channels are used widely for the design of frame parts as lightweight assemblies, especially if a high stiffness is needed. While many applications can be realized with forming of hollow square-sectioned extruded profiles such as a stretch bending and a hydro-forming, some applications demand the use of a press bending which can be hardly found in the previous study. In this study, by introducing the use of a press bending into car sub-frames, the demands for higher accuracy as well as higher flexible method than the conventional methods will be satisfied. With respect to the design of sub-frames, the process planning was performed from the shape of a sub-frame product. The designed processes were analyzed by the commercial FEM code, DEFORM-3D. Forming dies for the each process were designed and prototypes of sub-frames were manufactured by the verified farming process. In addition, some of the important features of design parameters in the press bending were reviewed.

Development of Light weight Aluminum Subframe using Hybrid forming process (복합성형공법 적용 경량 알루미늄 서브프레임 개발)

  • Kwon, T.W.;Park, B.C.;Jang, G.W.;Lee, W.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.361-363
    • /
    • 2007
  • The light weight aluminum subframe for automobile chassis part was developed using hybrid process, i.e. extruforming, press stamping and MIG welding. To achieve a 30 % weight reduction compared with conventional steel subframe keeping satisfactory performance, the design of cross-section of extruforming part was introduced, then forming simulation was performed and the final design was determined. In addition, we tried to estibilish optimun aluminum welding conditions for good penetration depth and few pore defact, finally the prototype of aluminum subframe was assembled using MIG welding method.

  • PDF

Development of Manufacture Technology on Aluminum Rear Subframe by Hot Air Forming Method (열간가스성형 공법을 이용한 알루미늄 리어 서브프레임 제조기술 개발)

  • Kim, B.N.;Son, J.Y.;Lee, G.D.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.222-225
    • /
    • 2008
  • Due to new requirements of the automotive industry, concerning lightweight and non-corroding construction, new production methods, The Hot Air Forming process of aluminum alloys are of special interest. The disadvantage of aluminum alloy is the poorer formability compared to steel. The Hot Air Forming process is one of the forming process receiving recent attention. In the current study, Fabrication of aluminum rear subframe has been attempted using seam and seamless aluminum tubes. On the base of hot workability of the extruded tube and PAM-STAMP simulation results, Optimum condition for fabricating aluminum rear sub(lame parts by Hot Air Forming could be determined.

  • PDF

Development of Aluminum Subframe for Automobile (자동차용 경량 알루미늄 서브프레임 개발)

  • Kwon, T.W.;Kim, J.C.;Jeon, J.H.;Jang, G.W.;Lee, W.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.292-294
    • /
    • 2006
  • The aluminum Subframe for automobile chassis part was developed using hybrid process, i.e. extruforming, press stamping and MIG welding. To achieve a 30 % weight reduction compared with convensional steel subframe keeping satisfactory performance, the design of cross-section of extruforming part was introduced, then forming simulation was performed and the final design was determined. In addition, we tried to estibilish optimun aluminum welding conditions for good penetration depth and few pore defect, finally the prototype of aluminum subframe was assembled using MIG welding method. Furthermore, we will adapt this technology to mass production and apply to the other chassis parts.

  • PDF

Development of aluminium chassis parts applied for Extruforming (알루미늄 익스트루포밍 샤시부품 개발 현찰)

  • Jang, G.W.;Lee, W.S.;Kim, D.E.;Oh, K.H.;Kim, J.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.337-340
    • /
    • 2006
  • Aluminum extruded profiles have been mostly used only a few automotive parts until now, such as roof rail, sunroof frame and bumper beams. However, Aluminum Extru-form technology, which was recently developed by foreign advanced manufacturer, made it possible to apply the aluminum extruded profiles to suspension parts of passenger and RV cars. It could be obtained by optimized billet casting, extrusion and stretch bending technology. It was possible to have the excellent weight reduction and the competitive price comparing with conventional process of aluminum for automotive parts. Combining additional process technology such as machining and joining, the application can be extended to various automotive parts. We have developed high strength aluminum alloy and fabricated subframe and suspension arm by extruforming process.

  • PDF

Development of Aluminum Subframe for Automobile using Hybrid Process (복합 공법 적용 알루미늄 서브프레임 개발)

  • Kim J. C.;Kwon T. W.;Park B. C.;Jang G. W.;Lee W. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.78-81
    • /
    • 2005
  • The aluminum Subframe for automobile was developed using hybrid process, i.e. extruforming and press forming. To achieve a $30\%$ weight reduction compared with convensional steel subframe keeping satisfactory performance, the design of cross-section of extrusion part was initiated, then forming simulation was performed and the final design was determined. In addition, we tried to estibilish proper aluminum welding conditions for good penetration depth and few pore defact, finally the prototype of aluminum subframe was assembled using MIG welding method.

  • PDF

Hot Air Forming Analysis of Automotive Rear Sub Frame using Aluminum Tube (알루미늄 튜브를 이용한 자동차 리어 서브 프레임의 열간가스 성형해석)

  • Kim, H.Y.;Yoon, S.J.;Lee, K.D.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.26-29
    • /
    • 2008
  • Recently, the hydroforming of high strength aluminum tubes has many studies and applications in manufacturing industry, especially in automotive industry. But high strength aluminum tube has limited expansion capability at most 15% at normal temperature. New manufacturing process, called hot air forming, is introduced to apply aluminum tube to the automotive sub frame components which have complex shape and require high expansion ratio about 40%. The process is carried out at the elevated temperature above $500^{\circ}C$, so numerous material properties and process parameters related to high temperature should be investigated and determined to get a sound product. In this paper, the hot air forming process of automotive sub frame was investigated. The effect of the forming parameters such as the temperature of tool, axial feeding and gas pressure are analyzes by using explicit finite element method.

  • PDF