• Title/Summary/Keyword: 알루미늄 발포재

Search Result 18, Processing Time 0.019 seconds

Mechanical Characteristics Analysis of Structural Light-weight Aluminum Foam (구조용 경량 알루미늄 발포금속의 기계적 특성 연구 분석)

  • Ma, Jeong Beom;Lee, Jeong Ick
    • Journal of the Korea Convergence Society
    • /
    • v.2 no.3
    • /
    • pp.1-6
    • /
    • 2011
  • Aluminum foam is one of the representative light-weight materials. In this study we analyzed the mechanical properties of the aluminum foam structures. Aluminum materials with pores have novel mechanical characteristics such as flame retardancy, damping, and energy absorption which are superior to those of polymer foam. Furthermore its reusable properties draw considerable interests. General properties, energy and acoustic absorption will be investigated and future research issues such as binding techniques of foam materials with other structures will be discussed through foam application examples.

유동상 코팅공정을 이용한 금속 중공체 제조

  • Kim, Yong-Jin;Lee, Jae-Uk;Yang, Sang-Seon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.18.1-18.1
    • /
    • 2009
  • 금속 다공체는 자동차, 선박, 건축 등의 분야에서 구조물이나 충격흡수제 등으로 응용되고 있는데 이들은 일반 금속 구조물에 비해 가볍고 플라스틱에비해서는 강한 장점을 지닌다. 현재 사용되고 있는 대부분의 금속 다공체는 발포 주조공정으로 제조된 알루미늄으로서, 철계 합금에 비해 가벼운 장점을 갖지만 강도가 상당히 떨어지고 가격이 높은 단점을 가진다. 따라서 본 연구에서는 알루미늄 대신 철계 합금으로 다공체를 제조하고자 하였고 제조방법으로는 주조공정 대신 분말공정을선택하였다. 분말공정은 구형 스티로폼을 금속분말 슬러리로 코팅한 후 스티로폼을 제거하여 낱개의 금속중공체(Metallic Hollow Sphere)를 제조하고 이렇게 제조된 중공체를 뭉쳐 성형함으로써최종 형상의 다공체를 제조하는 방법이다. 이 방법으로 제조된 다공체는 주조공정으로 제조된 다공체보다높은 강도를 나타내며 낱개의 중공체는 성형공정을 거치지 않고 필터나 충진재 등의 새로운 용도로 활용될 수 있다.

  • PDF

Manufacture and Bending Behavior of Stainless Steel Cylindrical Shell Filled with Aluminum Alloy Foam (다공성 알루미늄 합금이 충진된 스테인레스 강 원통 Shell의 제조 및 굽힘거동)

  • Kim, Am-Kee;Lee, Hyo-Jin;Cho, Seong-Seock
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.19-24
    • /
    • 2003
  • Potential applications of foam-filled section are the automotive structures. A foam-filled section can be used for the front rail and firewall structures to absorb impact energy during frontal or side collision. In the case of side collision where bending is involved in the crushing mechanics, the foam filler will be significant in maintaining progressive crushing of the thin-walled structures so that more impact energy can be absorbed. In this study, the manufacturing process of closed cell aluminum alloy foam filled stainless steel tube was studied, and the various foam filled specimens including piecewise fillers were prepared, tested and discussed about the bending behaviors.

  • PDF

Interior Noise Reduction of Enclosure Using Predicted Characteristics of Absorber (흡음재의 음향특성 예측에 의한 밀폐계의 내부 소음저감)

  • Lee Ghi-Youn;Sim Hyoun-Jin;Lee Jung-Yoon;Oh Jae-Eung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.60-66
    • /
    • 2006
  • For the purpose of finding out the sound field characteristics in a rectangular cavity, analytical and experimental studies are performed with white noise input. Two-microphone impedance tube method is used to measure the impedances of foamed aluminum. Foamed aluminum is well known metallic porous material which has excellent properties of light weight and high absorbing performance. And predicted impedances of foamed aluminum are compared with measured impedances. The predicted acoustical parameters are applied to the theoretical analysis to predict sound pressure field in the cavity. The measured sound absorption effects are compared with the predicted values for both cases with and without foamed aluminum lining in the cavity of the rectangular enclosure.

Heat Transfer Coefficient, Heat Release and Gas Hazard Tests for Expanded Polystyrene Heat Insulating Materials with Aluminum Foil (알루미늄 호일 부착 발포 폴리스티렌 단열재의 열전도율, 열방출시험 및 가스 유해성 시험)

  • Kong, Ha-Sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.20 no.4
    • /
    • pp.15-19
    • /
    • 2018
  • The purpose of this study is to enhance heat insulation effect and to decrease fire hazard by attaching aluminum foil to expanded polystyrene, which is mainly used for insulating materials, to have fire retardant. The result of the test confirmed that the insulating materials, expanded polystyrene of $10kg/m^3$ and $14kg/m^3$ of density attached aluminum foil on both sides, showed 12%, 14% of improved heat transfer coefficient respectively compared to existing expanded polystyrene of the same density. Besides, they met all the standards for the testing of heat release and gas hazard. On the other hand, the one made of general expanded polystyrene could not meet the standards of the heat release test and the gas hazard test.

An Experimental Study on the Pore Structure and Thermal Properties of Lightweight Foamed Concrete by Foaming Agent Type (기포제 종류에 따른 경량기포콘크리트의 기포구조 및 열적특성에 관한 실험적 연구)

  • Kim, Jin-Man;Choi, Hun-Gug;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.63-73
    • /
    • 2009
  • Recently, the use of lightweight panels in building structures has been increasing. Of the various lightweight panel types, styrofoam sandwich panels are inexpensive and are excellent in terms of their insulation capacity and their constructability. However, sandwich panels that include organic material are quite vulnerable to fire, and thus can numerous casualties in the event of a fire due to the lack of time to vacate and their emission of poisonous gas. On the other hand, lightweight foamed concrete is excellent, both in terms of its insulation ability and its fire resistance, due to its Inner pores. The properties of lightweight concrete is influenced by foaming agent type. Accordingly, this study investigates the insulation properties by foaming agent type, to evaluate the possibility of using light-weight foamed concrete instead of styrene foam. Our research found thatnon-heating zone temperature of lightweight foamed concrete using AP (Aluminum Powder) and FP (animal protein foaming agent) are lower than that of light-weight foamed concrete using AES (alkyl ether lactic acid ester). Lightweight foamed concrete using AES and FP satisfied fire performance requirements of two hours at a foam ratio 50, 100. Lightweight foamed concrete using AP satisfied fire performance requirements of two hours at AP ratio 0.1, 0.15. The insulation properties were better in closed pore foamed concrete by made AP, FP than with open pore foamed concrete made using AES.

Effect of Foaming Agent Content on the Apparent Density and Compressive Strength of Lightweight Geopolymers (발포제 함량에 따른 경량 다공성 지오폴리머의 밀도와 강도 특성)

  • Lee, Sujeong;An, Eung-Mo;Cho, Young-Hoon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.363-370
    • /
    • 2016
  • Lightweight geopolymers are more readily produced and give higher fire resistant performance than foam cement concrete. Lowering the density of solid geopolymers can be achieved by inducing chemical reactions that entrain gases to foam the geopolymer structure. This paper reports on the effects of adding different concentrations of aluminum powder on the properties of cellular structured geopolymers. The apparent density of lightweight geopolymers has a range from 0.7 to $1.2g/m^3$ with 0.025, 0.05 and 0.10 wt% of a foaming agent concentration, which corresponds to about 37~60 % of the apparent density, $1.96g/cm^3$, of solid geopolymers. The compressive strength of cellular structured geopolymers decreased to 6~18 % of the compressive strength, 45 MPa of solid geopolymers. The microstructure of geopolymers gel was equivalent for both solid and cellular structured geopolymers. The workability of geopolymers with polyprophylene fibers needs to be improved as in fiber-reinforced cement concrete. The lightweight geopolymers could be used as indoor wall tile or board due to fire resistance and incombustibility of geopolymers.

Effect of Foaming Temperature on Cell Structure of 606X Series Aluminum Alloy Metallic Foams (Foaming 온도에 따른 606X계 발포 알루미늄의 제조 특성)

  • Song, Yeong-Hwan;Park, Soo-Han;Jeong, Min-Jae;Kang, Kwang-Jung;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.28 no.2
    • /
    • pp.79-84
    • /
    • 2008
  • Metal foam is one of the most interesting materials with various multi-functional properties such as light weight, energy absorption, high stiffness and damping capability. Among them, energy absorption property has keen interests in the field of automotives for passenger protection. Nowadays, researches about pore size and porosity control of the foam are increased to correspond them. However, though energy absorption properties are improved, these results are not cost-effective process. In present research, however, as a part of improving the energy absorption property of metallic foams, 606X aluminum alloy was used for cell wall material which has higher strength than pure aluminum. And its morphological features are characterized. As a results, porosity and pore size are uniformity distribution with increasing foaming temperature in the case of 6061 alloy foams. 6063 alloy foam specimens have opposite tendency because of the influence of alloying element and viscosity of the molten melt.