• Title/Summary/Keyword: 알루미노실리케이트

Search Result 29, Processing Time 0.044 seconds

Ultra-high Temperature EM Wave Absorption Behavior for Ceramic/Sendust-aluminosilicate Composite in X-band (X-Band 영역에서의 세라믹/샌더스트-알루미노실리케이트 복합재의 초고온 전자파 흡수 거동)

  • Choi, Kwang-Sik;Sim, Dongyoung;Choi, Wonwoo;Shin, Joon-Hyung;Nam, Young-Woo
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.201-215
    • /
    • 2022
  • This paper presents the development of thin and lightweight ultra-high temperature radar-absorbing ceramic composites composed of an aluminosilicate ceramic matrix-based geopolymer reinforced ceramic fiber and sendust magnetic nanoparticles in X-band frequency range (8.2~12.4 GHz). The dielectric properties with regard to complex permittivity of ceramic/sendust-aluminosilicate composites were proportional to the size of sendust magnetic nanoparticle with high magnetic characteristic properties as flake shape and its concentrations in the target frequency range. The characteristic microstructures, element composition, phase identification, and thermal stability were examined by SEM, EDS, VSM and TGA, respectively. The fabricated total thicknesses of the proposed single slab ultra-high temperature radar absorber correspond to 1.585 mm, respectively, exhibiting their excellent EM absorption performance. The behavior of ultra-high temperature EM wave absorption properties was verified to the developed free-space measurement system linked with high temperature furnace for X-band from 25℃ to 1,000℃.

A Study on the Application of Aluminosilicate Sols in Shell Mold for Investment Casting ( I ) (정밀주조용 쉘 몰드에 알루미노실리케이트계 졸의 응용에 관한 연구 ( I ))

  • Kim, Jae-Won;Kim, Du-Hyeon;Seo, Seong-Mun;Jo, Chang-Yong;Choe, Seung-Ju;Kim, Jae-Cheol;Park, Yeong-Gyu
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1188-1195
    • /
    • 1999
  • The effect of aluminosilicate sol on the formation of mullite layer in zircon shell mold was investigated. Aluminosilicate sol was prepared by mixing of colloidal silica(NALCO(R) 1130) and an aqueous solution of aluminium nitrate at room temperature. The sol gelled at 50$^{\circ}C$ for 48 hrs. It was identified that the gel consists of aluminosilicate complexes and gibbsite. The coordination number of all aluminium ion bonded with silicon ion was four. Mullite phase formed by sintering above 1300$^{\circ}C$. XRD peak of mullite sharpened with increasing sintering temperature and the content of aluminium nitrate. Mullite phase displayed whisker-like 0.5~5${\mu}m $ particles. Separation between 1st and 3rd layers during sintering and the difference in thermal expansion coefficient between residual silica and mullite.

  • PDF

Opticsal Characteristics of Bismuth-doped Aluminosilicate Glass Codoped with Li and Ge (Bi 첨가 알루미노실리케이트 유리에서 Li 및 Ge 공첨가가 광 특성에 미치는 영향)

  • Seo, Young-Seok
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.3
    • /
    • pp.221-225
    • /
    • 2007
  • The possibility of improving amplification characteristics and lowering the melting point of bismuth-doped aluminosilicate glass as a new amplification material, which has broadband near-infrared emission at 1300 nm regions, was investigated. Spectroscopic analysis of bismuth-doped aluminosilicate glass shows that the addition of an alkali metal oxide, $Li_{2}O$ increases FWHM of fluorescence spectrum but decreases fluorescence intensity, while $GeO_{2}$ composition increases both FWHM of fluorescence spectrum and fluorescence intensity. Also, excellent optical amplification gain characteristics in a $GeO_{2}$-added sample were observed.

A Study on the Properties of Traditional Korean Roof Tile by Using Nano Alumino Silicate (전통한식기와의 나노알루미노실리케이트 첨가에 따른 성능연구)

  • Kim, Soon-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.5
    • /
    • pp.425-432
    • /
    • 2020
  • The appearance of Korean traditional roof tiles is beautiful and excellent in water resistance, fire resistance and durability, but a high sintering temperature of 1,200℃ or higher is required. Therefore, due to the economical and heavy weight problem, the current trend is to use different roof finishing materials than Korean traditional roof tiles. By adding nanoaluminosilicate to clay and kaolin, which are the materials of the clay roof tiles, the sintering temperature is sintered at a low temperature of 1,000℃ or less, and the optimal mixing and material process is designed to satisfy the characteristics required as a Korean traditional roof tile. The results of this study again demonstrate the superiority of Korean traditional tiles with roof finishing materials using nanoaluminate. The properties of Korean traditional roof tiles that satisfy the criteria of KS F 3510 by applying fire resistance of natural minerals and nanoparticle technology to flexural strength of 2800N, Bulk specific gravity of 2.0g/㎤ and absorption rate of less than 10.0%, through which and researched materials development.

A study on the strengthening of Sodalime glass using ion exchange method (이온강화법을 이용한 소다라임 글라스 강화에 관한 연구)

  • Ahn, H.W.;Oh, J.H.;Kweon, S.G.;Choi, S.D.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.145-151
    • /
    • 2014
  • The glass used for mobile display windows is required to have high strength. Chemical strengthening by means of ion exchange is widely used glass. The depth of the layer and the compressed stress are affected by tempering temperature and time. The purpose of this study is to investigate the range of DOL and CS, which to less breakage during reliability tests such as the ball drop test, hole drop test, 3-point bending test, drop test, and tumble test with Soda-lime Glass.

Synthesis and characterization of MCM-41 type aluminosilicates (MCM-41형태의 알루미노실리케이트의 합성특성)

  • Lee, Sung-Hee;Lee, Dong-Kyu;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1231-1234
    • /
    • 2003
  • A sample procedure has been described to room temperature synthesis, mesoporous aluminosilicate materials with strong surface acidity by using a cationic surfactnat cetyltrimethylammonium bromide(CTABr) as the template agent. All samples were charecterized by X-ray diffraction(XRD) and nitrogen adsorption. The crystallinity and surface area of MCM-41 type aluminosilicats decrease with decreasing of Si/Al ratio. The influence of the aluminum contents of MCM-41 on the coordination of Al and on the acidity is studied by $^{27}Al$ MAS NMR and temperature programmed desorption of ammonia(TPD). It was shown that the incorporation of Al atoms into the framework causes increasing of acid site surface. And then Al atoms in the framework were incorporated tetrahedrally in structure, which gave a rise to cationic sites in the framework.

  • PDF

Synthesis and Characterization of Aluminosilicate Prepared Using Structure Directing Agent Containing Piperidine Moiety (피페리딘형 구조유도분자를 이용한 알루미노실리케이트 제올라이트의 합성 및 특성 연구)

  • Kim, Su Hyun;Park, Sung Jun;Shin, Na Ra;Cho, Sung June
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.203-207
    • /
    • 2013
  • Zeolites with different structures were synthesized from the hydrothermal synthesis condition employing simple structure directing agent (SDA) containing piperidine moiety. The gel containing $1.0SiO_2$:0.9SDA:$0.062NaAlO_2$:0.217NaOH:$20H_2O$ was subject to hydrothermal synthesis at 413~453 K for 7 days. FER type zeolite was obtained at 433 K when piperidine was employed as SDA, whereas TON and MFI type zeolites were also obtained at 433 K when 2,6-dimethylpiperidine and 2,2,6,6-tetramethylpiperidine were used, respectively. Further increase of hydrothermal synthesis temperature to 453 K resulted in the formation of TON type zeolite when 2-mtheylpiperidine was used. The structural analysis of powder X ray diffraction pattern over FER type zeolite suggested that the SDA, piperidine interacted intimately with the zeolite where it located close to the framework.