• 제목/요약/키워드: 알고리즘 향상

검색결과 6,866건 처리시간 0.039초

VRML을 이용한 융합 영상에서 간질환자 발작 진원지의 3차원적 가시화와 위치 측정 구현 (Visualization and Localization of Fusion Image Using VRML for Three-dimensional Modeling of Epileptic Seizure Focus)

  • 이상호;김동현;유선국;정해조;윤미진;손혜경;강원석;이종두;김희중
    • 한국의학물리학회지:의학물리
    • /
    • 제14권1호
    • /
    • pp.34-42
    • /
    • 2003
  • World Wide Web (WWW)에서 Virtual Reality Modeling Language (VRML)를 이용하는 3차원 (3D) 디스플레이는 사용자에게 직관적인 정보를 더 효과적으로 제공해 준다. 웹을 기반으로 하는 해부학적 영상과 융합되는 기능적 영상의 3D 가시화는 아직까지 체계적인 방식으로 연구가 활발히 진행되지 않았다. 이 연구의 목적은 2D 영상들과 함께 웹에서 VRML을 이용하여 구현되는 3D 해부학적 표면 영상들과 기능적 표면 영상들을 동시적으로 관찰할 수 있게 하고 VRML을 통해 만들어진 거리 측정 도구를 가지고 관심영역의 공간적인 위치 정보를 제공하는 것이다. 본 연구에서는 한 명의 간질 환자로부터 Magnetic Resonance (MR) 축면 영상과 발작기 및 발작간기 Single Photon Emission Computed Tomography (SPECT) 축면 영상들을 각각 획득하였다. 발작 진원지의 확인을 향상시키기 위해서 subtractionictal SPECT coregistered to MRI (SISCOM)을 수행하였다 SISCOM 결과로 나타난 각 2D 영상들은 모든 voxel들의 평균값 위로 1-표준편차와 2-표준편차에 해당하는 문턱 이상의 영상 값을 갖도록 하였다. SISCOM으로 나타나는 간질 발작 진원지들과 MRI 영상에서 회색질, 백색질 및 뇌척수액의 경계들을 각각 분할하고 marching cube 알고리즘에 의해 VRML 표면 영상들로 나타내었다. 축면 영상에서 실제 거리를 나타내는 x, y축의 길이를 획득하고 z축선의 길이를 계산하였다. VRML을 이용한 거리 측정도구를 만들어 이전의 VRML 표면 영상들과 융합하였다. MRI 영상을 이용하여 3D 표면 영상들의 단면을 나타내고 3D 표면 영상들의 투명도를 설정하기 위해 Java Script 루틴을 사용자 인터페이스 도구로서 삽입하였다 웹 페이지에서 구현되는 3D 표면 영상들의 투명도와 관찰 위치를 조절함에 따라 모델들 사이의 공간적인 정보를 직관적으로 알 수 있었다. 간질 발작 진원지에 대응하는 해부학적 구조를 3D 표면 영상들을 가로지르는 MRI 평면 영상들을 통해서 확인하였다 간질 발작 진원지는 뇌의 오른쪽 측두엽에서 나타났고 공간적으로 발작 진원지의 실제 위치를 VRML 거리 측정 도구에 의해 알 수 있었다. 결론적으로 본 연구에서 제시하는 웹에 근거한 3D 융합 영상의 가시화와 위치 측정은 진단 및 치료 방사선학과 외과학 등의 분야에서 온라인 방식의 연구와 교육에 있어 많은 도움을 줄 것이다.

  • PDF

영한 기계 번역에서 미가공 텍스트 데이터를 이용한 대역어 선택 중의성 해소 (Target Word Selection Disambiguation using Untagged Text Data in English-Korean Machine Translation)

  • 김유섭;장정호
    • 정보처리학회논문지B
    • /
    • 제11B권6호
    • /
    • pp.749-758
    • /
    • 2004
  • 본 논문에서는 미가공 말뭉치 데이터를 활용하여 영한 기계번역 시스템의 대역어 선택 시 발생하는 중의성을 해소하는 방법을 제안한다. 이를 위하여 은닉 의미 분석(Latent Semantic Analysis : LSA)과 확률적 은닉 의미 분석(Probabilistic LSA : PLSA)을 적용한다. 이 두 기법은 텍스트 문단과 같은 문맥 정보가 주어졌을 때, 이 문맥이 내포하고 있는 복잡한 의미 구조를 표현할 수 있다 본 논문에서는 이들을 사용하여 언어적인 의미 지식(Semantic Knowledge)을 구축하였으며 이 지식은 결국 영한 기계번역에서의 대역어 선택 시 발생하는 중의성을 해소하기 위하여 단어간 의미 유사도를 추정하는데 사용된다. 또한 대역어 선택을 위해서는 미리 사전에 저장된 문법 관계를 활용하여야 한다. 본 논문에서는 이러한 대역어 선택 시 발생하는 데이터 희소성 문제를 해소하기 위하여 k-최근점 학습 알고리즘을 사용한다. 그리고 위의 두 모델을 활용하여 k-최근점 학습에서 필요한 예제 간 거리를 추정하였다. 실험에서는, 두 기법에서의 은닉 의미 공간을 구성하기 위하여 TREC 데이터(AP news)론 활용하였고, 대역어 선택의 정확도를 평가하기 위하여 Wall Street Journal 말뭉치를 사용하였다. 그리고 은닉 의미 분석을 통하여 대역어 선택의 정확성이 디폴트 의미 선택과 비교하여 약 10% 향상되었으며 PLSA가 LSA보다 근소하게 더 좋은 성능을 보였다. 또한 은닉 공간에서의 축소된 벡터의 차원수와 k-최근점 학습에서의 k값이 대역어 선택의 정확도에 미치는 영향을 대역어 선택 정확도와의 상관관계를 계산함으로써 검증하였다.젝트의 성격에 맞도록 필요한 조정만을 통하여 품질보증 프로세스를 확립할 수 있다. 개발 된 패키지의 효율적인 활용이 내조직의 소프트웨어 품질보증 구축에 투입되는 공수 및 어려움을 줄일 것으로 기대된다.도가 증가할 때 구기자 열수 추출 농축액은 $1.6182{\sim}2.0543$, 혼합구기자 열수 추출 농축액은 $1.7057{\sim}2.1462{\times}10^7\;J/kg{\cdot}mol$로 증가하였다. 이와 같이 구기자 열수 추출 농축액과 혼합구기자 열수 추출 농축액의 리올리지적 특성에 큰 차이를 나타내지는 않았다. security simultaneously.% 첨가시 pH 5.0, 7.0 및 8.0에서 각각 대조구의 57, 413 및 315% 증진되었다. 거품의 열안정성은 15분 whipping시, pH 4.0(대조구, 30.2%) 및 5.0(대조구, 23.7%)에서 각각 $0{\sim}38.0$$0{\sim}57.0%$이었고 pH 7.0(대조구, 39.6%) 및 8.0(대조구, 43.6%)에서 각각 $0{\sim}59.4$$36.6{\sim}58.4%$이었으며 sodium alginate 첨가시가 가장 양호하였다. 전체적으로 보아 거품안정성이 높은 것은 열안정성도 높은 경향이며, 표면장력이 낮으면 거품형성능이 높아지고, 비점도가 높으면 거품안정성 및 열안정성이 높아지는 경향이 있었다.protocol.eractions between application agents that are developed using different

인공신경회로망을 이용한 F-18-FDG 뇌 PET의 간질원인병소 자동해석 (Automatic Interpretation of Epileptogenic Zones in F-18-FDG Brain PET using Artificial Neural Network)

  • 이재성;김석기;이명철;박광석;이동수
    • 대한의용생체공학회:의공학회지
    • /
    • 제19권5호
    • /
    • pp.455-468
    • /
    • 1998
  • 이 연구에서는 간질 환자의 F-18-FDG 뇌 PET 영상을 공간정규화 기법으로 표준지도 위에 정규화한 후 표준지도의 해부학적 위치 정보를 이용하여 뇌기능영상의 영역을 자동적으로 분할하고 각 해부학적 위치의 F-18-FDG 섭취율을 추출하였다. 뇌 각 영역의 F-18-FDG 섭취율을 데이터베이스화한 것을 입력으로 하는 인공신경회로망을 구성하고 학습시켜 핵의학 전문의가 판독한 결과와 얼마나 일치되는지를 분석하였다. 핵의학 전문의 2명이 좌측측두엽간질(112명), 우측측두엽간질(81명) 혹은 정상(64명)으로 판독한 F-18-FDG 뇌 PET 영상을 대상으로, 학습의 치우침을 줄이기 위해 각 질환 군에서 동일한 수(40명)를 선택하여 학습군을 구성하고 학습군을 제외한 정상 24명, 좌측측두엽간질 72명, 우측 측두엽간질 41명의 F-18-FDG PET을 시험군으로 하였다. 모든 영상을 SPM76을 이용하여 MNI 표준지도 위에 공간정규화하고 전체 뇌영역의 평균 계수를 100으로 정규화하였다. 영역 분할 프로그램을 개발하여 표준지도를 34개 영역으로 분할하고 모든 영상에서 각 뇌영역엔 대한 평균 계수를 추출하였다. 비선형 패턴분류에 효과적인 다층퍼셉트론 신경회로망 모델을 써서 오류역전파 알고리즘으로 학습시켰다. 한 층의 은닉층을 부여하고 은닉층의 뉴런 수를 5개부터 차츰 늘려가며 최적의 개수를 선택하였다. 초기 가중치와 바이어스 값은 무작위 값을 갖게 하였다. 출력단은 세 개의 뉴런을 갖고 각 뉴런은 입력이 정상이면 [1 0 0], 좌측측두엽간질이면 [0 1 0], 우측측두엽간질이면 [0 1 0]의 값을 탐 값으로 하였다. 뉴런의 활성화 함수는 시그모이드 함수를 사용하였다. 입력단은 17개의 뉴런으로 구성하고 서로 마주보는 뇌영역의 계수 타이(오른쪽-왼쪽)를 입력으로 하였다 회로망의 학습 횟수를 10,000번으로 제한하여 오타의 허용치를 1로 설정하고 학습 횟수가 넘거나 오차가 허용치보다 작을 때 학습을 중단하게 하였다. 모멘텀과 적응형 학습율을 사용하여 신경회로망의 성능을 향상시키고 학습 속도를 빠르게 하였다. 모든 PET 영상에서 성공적으로 공간정규화 파라메터를 추출하여 표준지도에 정규화할 수 있었다 다층퍼셉트론 모델을 기반으로 한 인공신경회로망으로 27개의 은닉층 뉴런을 사용했을 때 최적의 결과를 얻을 수 있었다. 학습군에 대해서 1508번의 반복 학습을 시킨 결과 오차율 0%인 신경 회로망을 얻었으며 시험군에 대해 적용한 결과 전문가의 판독결과와 80.3%의 일치율을 보였다. 은닉층의 뉴런 수가 10개나 30개인 경우에도 학습군에 대해 오타율 0%인 신경회로망을 얻을 수 있었으며 이때의 시험군에 대한 일치율 역시 75∼80%의 값을 보였다.

  • PDF

T-Cache: 시계열 배관 데이타를 위한 고성능 캐시 관리자 (T-Cache: a Fast Cache Manager for Pipeline Time-Series Data)

  • 신제용;이진수;김원식;김선효;윤민아;한욱신;정순기;박세영
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제13권5호
    • /
    • pp.293-299
    • /
    • 2007
  • 지능형 배관 검사체(PIG)는 가스나 기름 배관 안을 지나가며 검사체에 장착된 여러 센서로부터 신호(센서 데이타로 불림)들을 취합하는 장치이다. PIG로부터 취합된 센서데이타들을 분석함으로써, 배관의 구멍, 뒤틀림 또는 잠재적으로 가스 폭발의 위험을 가지고 있는 결함들을 발견할 수 있다. 배관의 센서 데이타를 분석가가 분석을 할 때에는 주로 두 가지 분석 패턴을 사용한다. 첫 번째는 센서 데이터를 순차적으로 분석하는 순차적 분석 패턴이고, 두 번째는 특정한 구간을 반복해서 분석하는 반복적 분석 패턴이다. 특히, 센서 데이타를 분석할 때 반복적 분석 패턴이 많이 사용된다. 기존의 PIG 소프트웨어들은 사용자의 요청이 있을 때 마다 서버로부터 센서 데이타들을 오므로, 매 요청마다 네트워크 전송비용과 디스크 액세스 비용이 든다. 이와 같은 방법은 순차적 분석 패턴에는 효율적이지만, 분석 패턴의 대부분을 차지하는 반복적 분석 패턴에는 비효율적이다. 이와 같은 문제는 서버/클라이언트 환경에서 다수의 분석가가 동시에 분석을 할 경우에는 매우 심각해진다. 이러한 문제점을 해결하기 위해 본 논문에서는 배관 센서 데이타들을 여러 개의 시계열 데이타로 생각하고, 효율적으로 시계열 데이타를 캐싱 하는 T-Cache라 부르는 주기억장치 고성능 캐시 관리자를 제안한다. 본 연구는 클라이언트 측에서 시계열 데이타를 캐싱하는 최초의 연구이다. 먼저, 고정된 거리의 시계열 데이타들의 집합을 캐싱 단위로 생각하는 신호 캐시 라인이라는 새로운 개념을 제안하였다. 다음으로, T-Cache에서 사용되는 스마트 커서와 여러 알고리즘을 포함하는 여러 가지 자료구조를 제안한다. 실험 결과, 반복적 분석 패턴의 경우 T-Cache를 사용하는 것이 디스크 I/O측면과 수행 시간 측면에서 월등한 성능 향상을 보였다. 순차적 분석 패턴의 경우에도 T-Cache를 사용하지 않은 경우와 거의 유사한 성능을 보였다. 즉, 캐시를 사용함으로써 발생하는 추가비용은 무시할 수 있음을 보였다.

Conjugate Gradient 기법을 이용한 관측교통량 기반 기종점 OD행렬 추정 모형 개발 (The Estimation Model of an Origin-Destination Matrix from Traffic Counts Using a Conjugate Gradient Method)

  • 이헌주;이승재
    • 대한교통학회지
    • /
    • 제22권1호
    • /
    • pp.43-62
    • /
    • 2004
  • 전통적으로 기종점 OD행렬을 추정하는 방법은 가구통행조사나 노측면접조사를 실시하여 표본조사한 자료의 전수화 과정을 거쳐 기종점 OD행렬표를 작성한다. 조사 과정에서 조사표본수가 증가함에 따라 시간과 비용 및 조사오차가 수반되는 문제로 인하여 많은 제약이 내포되어 있다. 이러한 제약을 극복하기 위해 관측교통량을 이용하여 기종점 OD행렬을 추정하는 기법을 연구해 오고 있다 관측교통량으로 기종점 OD행렬을 추정하는 기법 중 gradient 모형은 가장 일반적으로 많이 이용하는 기법중의 하나다. 그러나 gradient모형을 이용하여 관측교통량으로 기종점 OD행렬을 추정한 결과 관측교통량과 추정교통량의 오차는 최소화시키면서 기종점 OD행렬을 추정하지만 사전(prior) 기종점 OD행렬의 OD행렬 구조를 유지하지 못할 경우가 많다. 즉 사전 기종점 OD행렬의 통행특성을 변경시키는 단점이 있다. 따라서 본 연구에서는 추정된 기종점 OD행렬은 사전 기종점 OD행렬의 OD행렬 구조를 반영하면서 관측교통량과 추정교통량의 오차를 최소화시켜주도록 하는 기종점 OD행렬 추정모형을 개발하기 위하여 Conjugate Gradient 알고리즘을 이용하였다. 개발된 모형을 검증하기 위하여 예제 분석가로망에서 모형의 일관성(일치성)을 분석하였다. 일관성 분석결과 모형의 상위수준(upper level)과 하위수준(lower level)이 내부적으로 유기적인 관계를 유지하고 있는 것으로 분석되었다. 또한 관측링크교통량에 관측오차를 반영하여 기종점 OD행렬의 추정력을 분석하였다. 분석결과는 관측교통량과 추정(배정)교통량의 오차는 허용오차 범위내에서 추정되는 것으로 분석되었고 추정된 기종점 OD행렬의 OD행렬 구조는 사전 기종점 OD행렬의 OD행렬 구조를 유지하는 것으로 분석되었다.른 지원이 필요하다. 이와 같은 철도화물활성화의 정책수립필요성의 배경에는 철도화물수송이 효율성과 환경친화성, 높은 안전성 등 사회적 비용을 감소시키는 장점을 가지고 때문이다. 철도화물운송회사도 현재의 수송기능과 함께 포워더로서의 기능을 가져야 할 것이며, 운임인하노력과 속도향상을 위한 노력을 계속하여야 할 것이다.적 대안경로 집합을 역추적 생성하는 과정을 단계별로 추가 설명하였다.을 받지 않은 시추공의 자료는 사용하였다 이러한 온천 주변 지역이라 하더라도 실제는 온천의 pumping 으로 인한 대류현상으로 주변 일대의 온도를 올려놓았기 때문에 비교적 높은 지열류량 값을 보인다. 한편 한반도 남동부 일대는 이번 추가된 자료에 의해 새로운 지열류량 분포 변화가 나타났다 강원 북부 오색온천지역 부근에서 높은 지열류량 분포를 보이며 또한 우리나라 대단층 중의 하나인 양산단층과 같은 방향으로 발달한 밀양단층, 모량단층, 동래단층 등 주변부로 NNE-SSW 방향의 지열류량 이상대가 발달한다. 이것으로 볼 때 지열류량은 지질구조와 무관하지 않음을 파악할 수 있다. 특히 이러한 단층대 주변은 지열수의 순환이 깊은 심도까지 가능하므로 이러한 대류현상으로 지표부근까지 높은 지온 전달이 되어 나타나는 것으로 판단된다.의 안정된 방사성표지효율을 보였다. $^{99m}Tc$-transferrin을 이용한 감염영상을 성공적으로 얻을 수 있었으며, $^{67}Ga$-citrate 영상과 비교하여 더 빠른 시간 안에 우수한 영상을 얻을 수 있었다. 그러므로 $^{99m}Tc$-transierrin이 감염 병소의 영상진단에 사용될 수 있을 것으로 기대된다.리를 정량화 하였다. 특히 선조체에서의 도파민 유리에 의한 수용체 결합능의

적응형 필터와 가변 임계값을 적용하여 잡음에 강인한 심전도 R-피크 검출 (Noise-robust electrocardiogram R-peak detection with adaptive filter and variable threshold)

  • 세이푸르;최철형;김시경;박인덕;김영필
    • 한국산학기술학회논문지
    • /
    • 제18권12호
    • /
    • pp.126-134
    • /
    • 2017
  • 심전도(ECG) 신호에서 R-피크를 추출하는 기법에 대하여 많은 연구가 진행 되어 왔으며, 다양한 방법으로 구현되어 왔다. 그러나 이러한 검출 방법 대부분은 실시간 휴대용 심전도 장치에서 구현하기가 복잡하고 어려운 단점이 있다. R-피크 검출을 위해서는 심전도 데이터에 대하여 베이스라인 드리프트 및 상용전원 잡음 제거 등의 적절한 전처리 및 후가공이 필요하며, 특히 적응형 필터를 활용한 기법에서는 적절한 임계값을 선택하는 것이 중요하다. 적응형 필터의 임계값을 추출하는 방식에서는 고정형(Fixed) 및 적응형(adaptive)으로 구분할 수 있다. 고정 임계 값 추출 방식은 고정된 임계값 보다 낮은 값의 입력이 들어오는 경우에 R-피크 값을 감지하지 못하는 경우가 있으며, 적응 임계값 추출 방식은 때때로 잡음에 의한 잘못된 임계값을 도출하여, 다른 파형(P혹은 T파)의 피크를 감지하는 경우도 나타난다. 본 논문에서는 계산상의 복잡성이 적고, 코드 구현이 단순하면서도 잡음에 강인한 R-피크 검출 알고리즘을 제안한다. 제안된 방식은 앞서 설명한 임계값 추출 문제를 해결하기 위해서, 적응형 필터를 사용해, 심전도 신호에서 베이스 라인 드리프트 제거를 하여 적절한 임계값을 계산하도록 한다. 그리고 필터 처리된 심전도 신호의 최소 값과 최대 값을 사용하여 적절한 임계값이 자동으로 추출 되도록 한다. 그런 다음 심전도 신호로부터 R-피크를 검출하기 위해 임계값 아래에서 'neighborhood searching' 기법이 적용된다. 제안된 방법은 R-피크 검출의 정확도를 향상시키고, 계산 량을 줄여 검출 속도가 보다 빨라지도록 하였다. 다음으로 R-피크 값이 검출 되면, R-R interval 등의 값을 이용해 심박 수를 계산할 수 있도록 한다. 실험결과 심박 수 검출 정확도와 감도가 약 100%로 매우 높았음을 확인할 수 있었다.

차량 운행기록정보와 통행배정 모형을 이용한 교차로 영향권의 공간적 패턴에 관한 연구 (A Study on Spatial Pattern of Impact Area of Intersection Using Digital Tachograph Data and Traffic Assignment Model)

  • 박승준;홍기만;김태균;서현;조중래;홍영석
    • 대한교통학회지
    • /
    • 제36권2호
    • /
    • pp.155-168
    • /
    • 2018
  • 본 연구는 단속류 도로에서 짧은 미래(5분 또는 10분)의 교차로 방향별 진입 교통량을 예측함에 앞서, 교차로 상류부 링크에서 교차로로 진입하는 방향별 패턴에 대한 연구를 수행하였고, 통행배정 모형과의 연계 및 활용을 통한 교통량 예측 가능성을 검토하였다. 분석 방법은 택시 DTG (Digital Tachograph) 자료(1주일)를 이용하여 2시간 단위로 구분된 교차로 방향별 교통량 비율을 변수로 클러스터 분석(Cluster analysis)을 수행하여 패턴의 유사성을 검토하였다. 또한, 통행배정 모형 결과와 연계를 위해 택시 DTG 자료와 교차로 중심의 5분 또는 10분 범위에 포함되는 영향권 비교 분석을 수행하였으며, 이를 위해 택시 DTG 자료와 통행배정 모형의 영향권 설정 알고리즘을 개발하였다. 분석 결과, 택시의 교차로 진입 패턴은 총 12개로 집합화 되었으며, 클러스터링의 신뢰 수준을 나타내는 Cubic Clustering Criterion은 6.92로 나타나 클러스터링 결과에 대한 신뢰성을 확보하였다. 통행배정 모형의 영향권 범위와 상관분석을 수행한 결과, 5분 영향권 범위에 대한 상관계수는 0.86으로 분석되어 유의한 결과를 도출하였다. 다만 10분 영향권 범위에서는 상관계수가 0.69로 다소 낮아지는 것으로 분석되었는데, 이는 통행량 및 네트워크 자료의 정밀성 부족에 따른 것으로 나타났다. 향후, 교통 분석용 네트워크의 정밀성과 시간대별 통행량의 정확성을 향상시켜 분석할 경우, 교차로 신호제어에 있어 통행배정 모형에서 산출된 교통량 자료를 활용할 수 있을 것으로 기대된다.

SVM을 이용한 VKOSPI 일 중 변화 예측과 실제 옵션 매매에의 적용 (VKOSPI Forecasting and Option Trading Application Using SVM)

  • 라윤선;최흥식;김선웅
    • 지능정보연구
    • /
    • 제22권4호
    • /
    • pp.177-192
    • /
    • 2016
  • 기계학습(Machine Learning)은 인공 지능의 한 분야로, 데이터를 이용하여 기계를 학습시켜 기계 스스로가 데이터 분석 및 예측을 하게 만드는 것과 관련한 컴퓨터 과학의 한 영역을 일컫는다. 그중에서 SVM(Support Vector Machines)은 주로 분류와 회귀 분석을 목적으로 사용되는 모델이다. 어느 두 집단에 속한 데이터들에 대한 정보를 얻었을 때, SVM 모델은 주어진 데이터 집합을 바탕으로 하여 새로운 데이터가 어느 집단에 속할지를 판단해준다. 최근 들어서 많은 금융전문가는 기계학습과 막대한 데이터가 존재하는 금융 분야와의 접목 가능성을 보며 기계학습에 집중하고 있다. 그러면서 각 금융사는 고도화된 알고리즘과 빅데이터를 통해 여러 금융업무 수행이 가능한 로봇(Robot)과 투자전문가(Advisor)의 합성어인 로보어드바이저(Robo-Advisor) 서비스를 발 빠르게 제공하기 시작했다. 따라서 현재의 금융 동향을 고려하여 본 연구에서는 기계학습 방법의 하나인 SVM을 활용하여 매매성과를 올리는 방법에 대해 제안하고자 한다. SVM을 통한 예측대상은 한국형 변동성지수인 VKOSPI이다. VKOSPI는 금융파생상품의 한 종류인 옵션의 가격에 영향을 미친다. VKOSPI는 흔히 말하는 변동성과 같고 VKOSPI 값은 옵션의 종류와 관계없이 옵션 가격과 정비례하는 특성이 있다. 그러므로 VKOSPI의 정확한 예측은 옵션 매매에서의 수익을 낼 수 있는 중요한 요소 중 하나이다. 지금까지 기계학습을 기반으로 한 VKOSPI의 예측을 다룬 연구는 없었다. 본 연구에서는 SVM을 통해 일 중의 VKOSPI를 예측하였고, 예측 내용을 바탕으로 옵션 매매에 대한 적용 가능 여부를 실험하였으며 실제로 향상된 매매 성과가 나타남을 증명하였다.

정밀한 다중센서 영상정합을 위한 통계적 상관성의 증대기법 (Enhancement of Inter-Image Statistical Correlation for Accurate Multi-Sensor Image Registration)

  • 김경수;이진학;나종범
    • 대한전자공학회논문지SP
    • /
    • 제42권4호
    • /
    • pp.1-12
    • /
    • 2005
  • 영상정합은 동일한 장면에 대해서 서로 다른 시간 혹은 서로 다른 특성의 센서로부터 서로 다른 위치에서 얻은 영상들의 위치적 대응관계를 찾는 기법이다. 이 논문에서는 특성이 다른 적외선 센서와 광학 센서로부터 얻은 영상의 정합을 위한 새로운 알고리즘을 제안한다. 지금까지 제안된 서로 다른 특성의 영상을 위한 정합기법은 크게 특징점 기반 영상정합기법과 밝기값 기반 영상정합기법으로 구분될 수 있다. 특징점 기반의 영상정합기법은 정확하게 대응하는 특징점을 선택하는 것이 성능에 결정적인 영향을 준다 그러나 적외선 영상과 가시광선 영상에서는 특징점이 서로 같지 않은 경우가 많기 때문에 강인하지 못하다 그리고 밝기 값 기반의 정합기법에서는 정규상호정보를 유사성 척도로 사용한 영상정합기법이 가장 좋은 성능을 제공하는 것으로 알려져 있다. 그러나 정규상호정보 기반의 영상정합기법은 두 영상의 통계적 상관성이 전역적이어야 한다는 가정을 전제하는데, 적외선 영상과 가시광선 영상에서는 이를 보장하지 못하는 경우가 많아 정규상호정보를 유사성 척도로 사용하는 영상정합기법에서도 좋은 성능을 기대하기 힐들다. 따라서 이 논문에서는 적외선 영상과 가시광선 영상의 통계적 상관성의 해석에 기반한 두 단계 영상정합기법을 제안한다. 정확하고 강인한 정합을 위해서 첫 단계에서는 두 영상에서 통계적 상관성이 높은 부분을 추출하는 ESCR기법과 두 영상을 통계적 상관성이 높도록 필터링하는 ESCF기법을 수행한다. 그리고 두 번째 단계에서는 첫 단계에서의 결과 영상에 대해서 정규상호정보를 유사성 척도로 한 영상정합을 수행한다. 다양한 적외선 영상과 가시광선 영상을 이용한 실험으로부터 제안하는 두 단계 영상정합기법이 기존의 정규상호정보 기반의 영상정합기법에 비해 정확도와 강인함, 그리고 실행 속도의 측면에서 더욱 향상된 성능을 제공함을 확인하였다.

형태학과 문자의 모양을 이용한 뉴스 비디오에서의 자동 문자 추출 (Automatic Text Extraction from News Video using Morphology and Text Shape)

  • 장인영;고병철;김길천;변혜란
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제8권4호
    • /
    • pp.479-488
    • /
    • 2002
  • 최근 들어 인터넷 사용의 증가와 더불어 디지털 비디오의 수요 또한 급격히 증가하고 있는 추세이다. 따라서 디지털 비디오 데이타베이스의 인덱싱을 위한 자동화된 도구가 필요하게 되었다. 디지털비디오 영상에 인위적으로 삽입되어진 문자와 배경에 자연적으로 포함되어진 배경문자 등의 문자 정보는 이러한 비디오 인덱싱을 위한 중요한 단서가 되어질 수 있다. 본 논문에서는 뉴스 비디오의 정지 영상에서 뉴스 자막과 배경 문자를 추출하기 위한 새로운 방법을 제안한다. 제안된 알고리즘은 다음과 같이 세 단계로 구성된다. 첫 번째 전처리 단계에서는 입력된 컬러 영상을 명도 영상으로 변환하고, 히스토그램 스트레칭을 적용하여 영상의 수준을 향상시킨다. 이 영상에 적응적 임계값 추출에 의한 분할 방법을 수정 적용하여 영상을 분할한다. 두 번째 단계에서는 적응적 이진화가 적용된 결과 영상에 모폴로지 연산을 적절하게 사용하여, 우선 문자 영역은 아니면서 문자로 판단되기 쉬운 양의 오류(false-positive) 요소들이 강조되어 남아있는 영상을 만든다. 또한, 변형된 이진화 결과 영상에 모폴로지 연산과 본 논문에서 제안한 기하학적 보정(Geo-corrertion) 필터링 방법을 적용하여 문자와 문자로 판단되기 쉬운 요소들이 모두 강조되어 남아있는 영상을 만든다. 이 두 영상의 차를 구함으로서 찾고자 하는 문자 요소들이 주로 남고, 문자가 아닌 문자처럼 보이는 오류 요소들은 대부분 제거된 결과 영상을 만든다. 문자로 판단되는 양의 오류 영역들을 남기는데 사용된 모폴로지 연산은 3$\times$3 크기의 구조 요소를 갖는 열림과 (열림닫힘+닫힘열림)/2 이며, 문자 및 문자와 유사한 요소들을 남기는데 사용된 연산은 (열림닫힘+닫힘열림)/2와 기하학적 보정이다. 세 번째 검증 단계에서는 전체 영상 화소수 대비 각 후보 문자 영역의 화소수 비율, 각 후보 문자 영역의 전체 화소수 대비 외곽선의 화소수 비율, 각 외곽 사각형의 폭 대 높이간의 비율 등을 고려하여 비문자로 판단되는 요소들을 제거한다. 임의의 300개의 국내 뉴스 영상을 대상으로 실험한 결과 93.6%의 문자 추출률을 얻을 수 있었다. 또한, 본 논문에서 제안한 방법으로 국외 뉴스, 영화 비디오 등의 영상에서도 좋은 추출을 보임을 확인할 수 있었다.