• Title/Summary/Keyword: 알고리즘 향상

Search Result 6,866, Processing Time 0.035 seconds

A Study on the Intelligent Online Judging System Using User-Based Collaborative Filtering

  • Hyun Woo Kim;Hye Jin Yun;Kwihoon Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.273-285
    • /
    • 2024
  • With the active utilization of Online Judge (OJ) systems in the field of education, various studies utilizing learner data have emerged. This research proposes a problem recommendation based on a user-based collaborative filtering approach with learner data to support learners in their problem selection. Assistance in learners' problem selection within the OJ system is crucial for enhancing the effectiveness of education as it impacts the learning path. To achieve this, this system identifies learners with similar problem-solving tendencies and utilizes their problem-solving history. The proposed technique has been implemented on an OJ site in the fields of algorithms and programming, operated by the Chungbuk Education Research and Information Institute. The technique's service utility and usability were assessed through expert reviews using the Delphi technique. Additionally, it was piloted with site users, and an analysis of the ratio of correctness revealed approximately a 16% higher submission rate for recommended problems compared to the overall submissions. A survey targeting users who used the recommended problems yielded a 78% response rate, with the majority indicating that the feature was helpful. However, low selection rates of recommended problems and low response rates within the subset of users who used recommended problems highlight the need for future research focusing on improving accessibility, enhancing user feedback collection, and diversifying learner data analysis.

Robust Speech Recognition Algorithm of Voice Activated Powered Wheelchair for Severely Disabled Person (중증 장애우용 음성구동 휠체어를 위한 강인한 음성인식 알고리즘)

  • Suk, Soo-Young;Chung, Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.250-258
    • /
    • 2007
  • Current speech recognition technology s achieved high performance with the development of hardware devices, however it is insufficient for some applications where high reliability is required, such as voice control of powered wheelchairs for disabled persons. For the system which aims to operate powered wheelchairs safely by voice in real environment, we need to consider that non-voice commands such as user s coughing, breathing, and spark-like mechanical noise should be rejected and the wheelchair system need to recognize the speech commands affected by disability, which contains specific pronunciation speed and frequency. In this paper, we propose non-voice rejection method to perform voice/non-voice classification using both YIN based fundamental frequency(F0) extraction and reliability in preprocessing. We adopted a multi-template dictionary and acoustic modeling based speaker adaptation to cope with the pronunciation variation of inarticulately uttered speech. From the recognition tests conducted with the data collected in real environment, proposed YIN based fundamental extraction showed recall-precision rate of 95.1% better than that of 62% by cepstrum based method. Recognition test by a new system applied with multi-template dictionary and MAP adaptation also showed much higher accuracy of 99.5% than that of 78.6% by baseline system.

A Fusion Sensor System for Efficient Road Surface Monitorinq on UGV (UGV에서 효율적인 노면 모니터링을 위한 퓨전 센서 시스템 )

  • Seonghwan Ryu;Seoyeon Kim;Jiwoo Shin;Taesik Kim;Jinman Jung
    • Smart Media Journal
    • /
    • v.13 no.3
    • /
    • pp.18-26
    • /
    • 2024
  • Road surface monitoring is essential for maintaining road environment safety through managing risk factors like rutting and crack detection. Using autonomous driving-based UGVs with high-performance 2D laser sensors enables more precise measurements. However, the increased energy consumption of these sensors is limited by constrained battery capacity. In this paper, we propose a fusion sensor system for efficient surface monitoring with UGVs. The proposed system combines color information from cameras and depth information from line laser sensors to accurately detect surface displacement. Furthermore, a dynamic sampling algorithm is applied to control the scanning frequency of line laser sensors based on the detection status of monitoring targets using camera sensors, reducing unnecessary energy consumption. A power consumption model of the fusion sensor system analyzes its energy efficiency considering various crack distributions and sensor characteristics in different mission environments. Performance analysis demonstrates that setting the power consumption of the line laser sensor to twice that of the saving state when in the active state increases power consumption efficiency by 13.3% compared to fixed sampling under the condition of λ=10, µ=10.

Design of Digital Phase-locked Loop based on Two-layer Frobenius norm Finite Impulse Response Filter (2계층 Frobenius norm 유한 임펄스 응답 필터 기반 디지털 위상 고정 루프 설계)

  • Sin Kim;Sung Shin;Sung-Hyun You;Hyun-Duck Choi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 2024
  • The digital phase-locked loop(DPLL) is one of the circuits composed of a digital detector, digital loop filter, voltage-controlled oscillator, and divider as a fundamental circuit, widely used in many fields such as electrical and circuit fields. A state estimator using various mathematical algorithms is used to improve the performance of a digital phase-locked loop. Traditional state estimators have utilized Kalman filters of infinite impulse response state estimators, and digital phase-locked loops based on infinite impulse response state estimators can cause rapid performance degradation in unexpected situations such as inaccuracies in initial values, model errors, and various disturbances. In this paper, we propose a two-layer Frobenius norm-based finite impulse state estimator to design a new digital phase-locked loop. The proposed state estimator uses the estimated state of the first layer to estimate the state of the first layer with the accumulated measurement value. To verify the robust performance of the new finite impulse response state estimator-based digital phase locked-loop, simulations were performed by comparing it with the infinite impulse response state estimator in situations where noise covariance information was inaccurate.

A Study on the Applicability of the Crack Measurement Digital Data Graphics Program for Field Investigations of Buildings Adjacent to Construction Sites (건설 현장 인접 건물의 현장 조사를 위한 균열 측정 디지털 데이터 그래픽 프로그램 적용 가능성에 관한 연구)

  • Ui-In Jung;Bong-Joo Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.63-71
    • /
    • 2024
  • Through the development of construction technology, various construction projects such as redevelopment projects, undergrounding of roads, expansion of subways, and metro railways are being carried out. However, this has led to an increase in the number of construction projects in existing urban centers and neighborhoods, resulting in an increase in the number of damages and disputes between neighboring buildings and residents, as well as an increase in safety accidents due to the aging of existing buildings. In this study, digital data was applied to a graphics program to objectify the progress of cracks by comparing the creation of cracks and the increase in length and width through photographic images and presenting the degree of cracks numerically. Through the application of the program, the error caused by the subjective judgment of crack change, which was mentioned as a shortcoming of the existing field survey, was solved. It is expected that the program can be used universally in the building diagnosis process by improving its reliability if supplemented and improved in the process of use. As a follow-up study, it is necessary to apply the extraction algorithm of the digital graphic data program to calculate the length and width of the crack by itself without human intervention in the preprocessing work and to check the overall change of the building.

Leakage noise detection using a multi-channel sensor module based on acoustic intensity (음향 인텐시티 기반 다채널 센서 모듈을 이용한 배관 누설 소음 탐지)

  • Hyeonbin Ryoo;Jung-Han Woo;Yun-Ho Seo;Sang-Ryul Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.4
    • /
    • pp.414-421
    • /
    • 2024
  • In this paper, we design and verify a system that can detect piping leakage noise in an environment with significant reverberation and reflection using a multi-channel acoustic sensor module as a technology to prevent major plant accidents caused by leakage. Four-channel microphones arranged in a tetrahedron are designed as a single sensor module to measure three-dimensional sound intensity vectors. In an environment with large effects of reverberation and reflection, the measurement error of each sensor module increases on average, so after placing multiple sensor modules in the field, measurement results showing locations with large errors due to effects such as reflection are excluded. Using the intersection between three-dimensional vectors obtained from several pairs of sensor modules, the coordinates where the sound source is located are estimated, and outliers (e.g., positions estimated to be outside the site, positions estimated to be far from the average position) are detected and excluded among the points. For achieving aforementioned goal, an excluding algorithm by deciding the outliers among the estimated positions was proposed. By visualizing the estimated location coordinates of the leakage sound on the site drawing within 1 second, we construct and verify a system that can detect the location of the leakage sound in real time and enable immediate response. This study is expected to contribute to improving accident response capabilities and ensuring safety in large plants.

Cavitation signal detection based on time-series signal statistics (시계열 신호 통계량 기반 캐비테이션 신호 탐지)

  • Haesang Yang;Ha-Min Choi;Sock-Kyu Lee;Woojae Seong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.4
    • /
    • pp.400-405
    • /
    • 2024
  • When cavitation noise occurs in ship propellers, the level of underwater radiated noise abruptly increases, which can be a critical threat factor as it increases the probability of detection, particularly in the case of naval vessels. Therefore, accurately and promptly assessing cavitation signals is crucial for improving the survivability of submarines. Traditionally, techniques for determining cavitation occurrence have mainly relied on assessing acoustic/vibration levels measured by sensors above a certain threshold, or using the Detection of Envelop Modulation On Noise (DEMON) method. However, technologies related to this rely on a physical understanding of cavitation phenomena and subjective criteria based on user experience, involving multiple procedures, thus necessitating the development of techniques for early automatic recognition of cavitation signals. In this paper, we propose an algorithm that automatically detects cavitation occurrence based on simple statistical features reflecting cavitation characteristics extracted from acoustic signals measured by sensors attached to the hull. The performance of the proposed technique is evaluated depending on the number of sensors and model test conditions. It was confirmed that by sufficiently training the characteristics of cavitation reflected in signals measured by a single sensor, the occurrence of cavitation signals can be determined.

Evaluation method for interoperability of weapon systems applying natural language processing techniques (자연어처리 기법을 적용한 무기체계의 상호운용성 평가방법)

  • Yong-Gyun Kim;Dong-Hyen Lee
    • Journal of The Korean Institute of Defense Technology
    • /
    • v.5 no.3
    • /
    • pp.8-17
    • /
    • 2023
  • The current weapon system is operated as a complex weapon system with various standards and protocols applied, so there is a risk of failure in smooth information exchange during combined and joint operations on the battlefield. The interoperability of weapon systems to carry out precise strikes on key targets through rapid situational judgment between weapon systems is a key element in the conduct of war. Since the Korean military went into service, there has been a need to change the configuration and improve performance of a large number of software and hardware, but there is no verification system for the impact on interoperability, and there are no related test tools and facilities. In addition, during combined and joint training, errors frequently occur during use after arbitrarily changing the detailed operation method and software of the weapon/power support system. Therefore, periodic verification of interoperability between weapon systems is necessary. To solve this problem, rather than having people schedule an evaluation period and conduct the evaluation once, AI should continuously evaluate the interoperability between weapons and power support systems 24 hours a day to advance warfighting capabilities. To solve these problems, To this end, preliminary research was conducted to improve defense interoperability capabilities by applying natural language processing techniques (①Word2Vec model, ②FastText model, ③Swivel model) (using published algorithms and source code). Based on the results of this experiment, we would like to present a methodology (automated evaluation of interoperability requirements evaluation / level measurement through natural language processing model) to implement an automated defense interoperability evaluation tool without relying on humans.

  • PDF

Development and Efficacy Validation of an ICF-Based Chatbot System to Enhance Community Participation of Elderly Individuals with Mild Dementia in South Korea (우리나라 경도 치매 노인의 지역사회 참여 증진을 위한 ICF 기반 Decision Tree for Chatbot 시스템 개발과 효과성 검증)

  • Haewon Byeon
    • Journal of Advanced Technology Convergence
    • /
    • v.3 no.3
    • /
    • pp.17-27
    • /
    • 2024
  • This study focuses on the development and evaluation of a chatbot system based on the International Classification of Functioning, Disability, and Health (ICF) framework to enhance community participation among elderly individuals with mild dementia in South Korea. The study involved 12 elderly participants who were living alone and had been diagnosed with mild dementia, along with 15 caregivers who were actively involved in their daily care. The development process included a comprehensive needs assessment, system design, content creation, natural language processing using Transformer Attention Algorithm, and usability testing. The chatbot is designed to offer personalized activity recommendations, reminders, and information that support physical, social, and cognitive engagement. Usability testing revealed high levels of user satisfaction and perceived usefulness, with significant improvements in community activities and social interactions. Quantitative analysis showed a 92% increase in weekly community activities and an 84% increase in social interactions. Qualitative feedback highlighted the chatbot's user-friendly interface, relevance of suggested activities, and its role in reducing caregiver burden. The study demonstrates that an ICF-based chatbot system can effectively promote community participation and improve the quality of life for elderly individuals with mild dementia. Future research should focus on refining the system and evaluating its long-term impact.

A Study on Generation Quality Comparison of Concrete Damage Image Using Stable Diffusion Base Models (Stable diffusion의 기저 모델에 따른 콘크리트 손상 영상의 생성 품질 비교 연구)

  • Seung-Bo Shim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.4
    • /
    • pp.55-61
    • /
    • 2024
  • Recently, the number of aging concrete structures is steadily increasing. This is because many of these structures are reaching their expected lifespan. Such structures require accurate inspections and persistent maintenance. Otherwise, their original functions and performance may degrade, potentially leading to safety accidents. Therefore, research on objective inspection technologies using deep learning and computer vision is actively being conducted. High-resolution images can accurately observe not only micro cracks but also spalling and exposed rebar, and deep learning enables automated detection. High detection performance in deep learning is only guaranteed with diverse and numerous training datasets. However, surface damage to concrete is not commonly captured in images, resulting in a lack of training data. To overcome this limitation, this study proposed a method for generating concrete surface damage images, including cracks, spalling, and exposed rebar, using stable diffusion. This method synthesizes new damage images by paired text and image data. For this purpose, a training dataset of 678 images was secured, and fine-tuning was performed through low-rank adaptation. The quality of the generated images was compared according to three base models of stable diffusion. As a result, a method to synthesize the most diverse and high-quality concrete damage images was developed. This research is expected to address the issue of data scarcity and contribute to improving the accuracy of deep learning-based damage detection algorithms in the future.