• Title/Summary/Keyword: 알고리즘 통제

Search Result 192, Processing Time 0.022 seconds

Parameter Calibration of Storage Function Model and Flood Forecasting (2) Comparative Study on the Flood Forecasting Methods (저류함수모형의 매개변수 보정과 홍수예측 (2) 홍수예측방법의 비교 연구)

  • Kim, Bum Jun;Song, Jae Hyun;Kim, Hung Soo;Hong, Il Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.39-50
    • /
    • 2006
  • The flood control offices of main rivers have used a storage function model to forecast flood stage in Korea and studies of flood forecasting actively have been done even now. On this account, the storage function model, which is used in flood control office, regression models and artificial neural network model are applied into flood forecasting of study watershed in this paper. The result obtained by each method are analyzed for the comparative study. In case of storage function model, this paper uses the representative parameters of the flood control offices and the optimized parameters. Regression coefficients are obtained by regression analysis and neural network is trained by backpropagation algorithm after selecting four events between 1995 to 2001. As a result of this study, it is shown that the optimized parameters are superior to the representative parameters for flood forecasting. The results obtained by multiple, robust, stepwise regression analysis, one of the regression methods, show very good forecasts. Although the artificial neural network model shows less exact results than the regression model, it can be efficient way to produce a good forecasts.

Face Tracking and Recognition in Video with PCA-based Pose-Classification and (2D)2PCA recognition algorithm (비디오속의 얼굴추적 및 PCA기반 얼굴포즈분류와 (2D)2PCA를 이용한 얼굴인식)

  • Kim, Jin-Yul;Kim, Yong-Seok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.423-430
    • /
    • 2013
  • In typical face recognition systems, the frontal view of face is preferred to reduce the complexity of the recognition. Thus individuals may be required to stare into the camera, or the camera should be located so that the frontal images are acquired easily. However these constraints severely restrict the adoption of face recognition to wide applications. To alleviate this problem, in this paper, we address the problem of tracking and recognizing faces in video captured with no environmental control. The face tracker extracts a sequence of the angle/size normalized face images using IVT (Incremental Visual Tracking) algorithm that is known to be robust to changes in appearance. Since no constraints have been imposed between the face direction and the video camera, there will be various poses in face images. Thus the pose is identified using a PCA (Principal Component Analysis)-based pose classifier, and only the pose-matched face images are used to identify person against the pre-built face DB with 5-poses. For face recognition, PCA, (2D)PCA, and $(2D)^2PCA$ algorithms have been tested to compute the recognition rate and the execution time.

Design and Implementation of Multi-dimensional Learning Path Pattern Analysis System (다차원 학습경로 패턴 분석 시스템의 설계 및 구현)

  • Baek, Jang-Hyeon;Kim, Yung-Sik
    • The KIPS Transactions:PartA
    • /
    • v.12A no.5 s.95
    • /
    • pp.461-470
    • /
    • 2005
  • In leaner-controlled environment where learners can decide and restructure the contents, methods and order of learning by themselves, it is possible to apply individualized learning in consideration of each learner's characteristics. The present study analyzed learners' learning path pattern, which is one of learners' characteristics important in Web-based teaching-learning process, using the Apriori algorithm and grouped learners according to their learning path pattern. Based on the result, we designed and implemented a multi-dimensional learning path pattern analysis system to provide individual learners with teaming paths, learning contents, learning media, supplementary teaming contents, the pattern of material presentation, etc. multi-dimensionally. According to the result of surveying satisfaction with the developed system satisfaction with supplementary learning contents was highest (Highly satisfied '$24.5\%$, Satisfied'$35.7\%$). By learners' level, satisfaction was higher in low-level learners (Highly satisfied'$20.2\%$, Satisfied'$31.2\%$) than in high-level learners (Highly satisfied'$18.4\%$, 'Satisfied'$28.54\%$). The developed system is expected to provide learners with multi-dimensionally meaningful information from various angles using OLAP technologies such as drill-up and drill-down.

Development of Qual2E Interface System Coupled with HyGIS (HyGIS와 Qual2E의 연계 시스템 개발)

  • Park, In-Hyeok;Kim, Kyung-Tak;Ha, Seong-Ryong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.2
    • /
    • pp.96-108
    • /
    • 2011
  • Going abreast of high public concerns on the environment, the need of environmental modeling has been increased to assess the impact of space exploitation of environment. GIS offers potential solutions to the many problems encountered during water-quality modeling. But there are also many problems associated with the modeling. The preparation of necessary parameters for the modeling can be complicated. Also, the results from one model can be different from each other even the same area is analyzed. This paper aims to develop the data processing system to couple the Qual2E and HyGIS in which Qual2E input and output data files can be created, modified and processed using HyGIS and assess the performance of the system. A structural analysis and standardization of modeling are conducted to identify data flow and processing of Qual2E. Algorithms of the defined processors are designed and developed as component modules. The data model of HyGIS-Qual2E is designed, and GUI(Graphical User Interface) is developed using Visual Basic 6.0 and GDK.

Training a semantic segmentation model for cracks in the concrete lining of tunnel (터널 콘크리트 라이닝 균열 분석을 위한 의미론적 분할 모델 학습)

  • Ham, Sangwoo;Bae, Soohyeon;Kim, Hwiyoung;Lee, Impyeong;Lee, Gyu-Phil;Kim, Donggyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.549-558
    • /
    • 2021
  • In order to keep infrastructures such as tunnels and underground facilities safe, cracks of concrete lining in tunnel should be detected by regular inspections. Since regular inspections are accomplished through manual efforts using maintenance lift vehicles, it brings about traffic jam, exposes works to dangerous circumstances, and deteriorates consistency of crack inspection data. This study aims to provide methodology to automatically extract cracks from tunnel concrete lining images generated by the existing tunnel image acquisition system. Specifically, we train a deep learning based semantic segmentation model with open dataset, and evaluate its performance with the dataset from the existing tunnel image acquisition system. In particular, we compare the model performance in case of using all of a public dataset, subset of the public dataset which are related to tunnel surfaces, and the tunnel-related subset with negative examples. As a result, the model trained using the tunnel-related subset with negative examples reached the best performance. In the future, we expect that this research can be used for planning efficient model training strategy for crack detection.

A Study on Information System for Safe Transportation of Emergency Patients in the Era of Pandemic Infectious Disease (팬데믹 감염병 시대에 안전이송을 위한 정보시스템 연구)

  • Seungyong Kim;Incheol Hwang;Dongsik Kim
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.839-846
    • /
    • 2022
  • Purpose: To secure the safety of firefighters who are dispatched to emergency activities for patients with suspected infectious diseases during an epidemic, and to identify the current status of suspected infectious disease patients by region based on the information collected at the site, and manage firefighting infectious diseases that can be controlled and supported I want to develop a system. Method: Develop a smartphone app that can classify suspected infectious disease patients to check whether an infectious disease is suspected, and develop a disposable NFC tag for patient identification to prevent infection from suspected infectious disease patients. Develop a management system that collects and analyzes data related to emergency patients with suspected infectious disease input from the field and provides them to relevant business personnel to evaluate whether the transport of emergency patients with suspected infectious disease is improved. Result: As a result of the experiment, it was possible to determine whether an infectious disease was suspected through the algorithm implemented in the smartphone app, and the retransfer rate was significantly reduced by transferring to an appropriate hospital. Conclusion: Through this study, the possibility of improving emergency medical services by applying ICT technology to emergency medical services was confirmed. It is expected that the safety of paramedics will be actively secured.

The Role of Control Transparency and Outcome Feedback on Security Protection in Online Banking (계좌 이용 과정과 결과의 투명성이 온라인 뱅킹 이용자의 보안 인식에 미치는 영향)

  • Lee, Un-Kon;Choi, Ji Eun;Lee, Ho Geun
    • Information Systems Review
    • /
    • v.14 no.3
    • /
    • pp.75-97
    • /
    • 2012
  • Fostering trusting belief in financial transactions is a challenging task in Internet banking services. Authenticated Certificate had been regarded as an effective method to guarantee the trusting belief for online transactions. However, previous research claimed that this method has some loopholes for such abusers as hackers, who intend to attack the financial accounts of innocent transactors in Internet. Two types of methods have been suggested as alternatives for securing user identification and activity in online financial services. Control transparency uses information over the transaction process to verify and to control the transactions. Outcome feedback, which refers to the specific information about exchange outcomes, provides information over final transaction results. By using these two methods, financial service providers can send signals to involved parties about the robustness of their security mechanisms. These two methods-control transparency and outcome feedback-have been widely used in the IS field to enhance the quality of IS services. In this research, we intend to verify that these two methods can also be used to reduce risks and to increase the security protections in online banking services. The purpose of this paper is to empirically test the effects of the control transparency and the outcome feedback on the risk perceptions in Internet banking services. Our assumption is that these two methods-control transparency and outcome feedback-can reduce perceived risks involved with online financial transactions, while increasing perceived trust over financial service providers. These changes in user attitudes can increase the level of user satisfactions, which may lead to the increased user loyalty as well as users' willingness to pay for the financial transactions. Previous research in IS suggested that the increased level of transparency on the process and the result of transactions can enhance the information quality and decision quality of IS users. Transparency helps IS users to acquire the information needed to control the transaction counterpart and thus to complete transaction successfully. It is also argued that transparency can reduce the perceived transaction risks in IS usage. Many IS researchers also argued that the trust can be generated by the institutional mechanisms. Trusting belief refers to the truster's belief for the trustee to have attributes for being beneficial to the truster. Institution-based trust plays an important role to enhance the probability of achieving a successful outcome. When a transactor regards the conditions crucial for the transaction success, he or she considers the condition providers as trustful, and thus eventually trust the others involved with such condition providers. In this process, transparency helps the transactor complete the transaction successfully. Through the investigation of these studies, we expect that the control transparency and outcome feedback can reduce the risk perception on transaction and enhance the trust with the service provider. Based on a theoretical framework of transparency and institution-based trust, we propose and test a research model by evaluating research hypotheses. We have conducted a laboratory experiment in order to validate our research model. Since the transparency artifact(control transparency and outcome feedback) is not yet adopted in online banking services, the general survey method could not be employed to verify our research model. We collected data from 138 experiment subjects who had experiences with online banking services. PLS is used to analyze the experiment data. The measurement model confirms that our data set has appropriate convergent and discriminant validity. The results of testing the structural model indicate that control transparency significantly enhances the trust and significantly reduces the risk perception of online banking users. The result also suggested that the outcome feedback significantly enhances the trust of users. We have found that the reduced risk and the increased trust level significantly improve the level of service satisfaction. The increased satisfaction finally leads to the increased loyalty and willingness to pay for the financial services.

  • PDF

Adaptive RFID anti-collision scheme using collision information and m-bit identification (충돌 정보와 m-bit인식을 이용한 적응형 RFID 충돌 방지 기법)

  • Lee, Je-Yul;Shin, Jongmin;Yang, Dongmin
    • Journal of Internet Computing and Services
    • /
    • v.14 no.5
    • /
    • pp.1-10
    • /
    • 2013
  • RFID(Radio Frequency Identification) system is non-contact identification technology. A basic RFID system consists of a reader, and a set of tags. RFID tags can be divided into active and passive tags. Active tags with power source allows their own operation execution and passive tags are small and low-cost. So passive tags are more suitable for distribution industry than active tags. A reader processes the information receiving from tags. RFID system achieves a fast identification of multiple tags using radio frequency. RFID systems has been applied into a variety of fields such as distribution, logistics, transportation, inventory management, access control, finance and etc. To encourage the introduction of RFID systems, several problems (price, size, power consumption, security) should be resolved. In this paper, we proposed an algorithm to significantly alleviate the collision problem caused by simultaneous responses of multiple tags. In the RFID systems, in anti-collision schemes, there are three methods: probabilistic, deterministic, and hybrid. In this paper, we introduce ALOHA-based protocol as a probabilistic method, and Tree-based protocol as a deterministic one. In Aloha-based protocols, time is divided into multiple slots. Tags randomly select their own IDs and transmit it. But Aloha-based protocol cannot guarantee that all tags are identified because they are probabilistic methods. In contrast, Tree-based protocols guarantee that a reader identifies all tags within the transmission range of the reader. In Tree-based protocols, a reader sends a query, and tags respond it with their own IDs. When a reader sends a query and two or more tags respond, a collision occurs. Then the reader makes and sends a new query. Frequent collisions make the identification performance degrade. Therefore, to identify tags quickly, it is necessary to reduce collisions efficiently. Each RFID tag has an ID of 96bit EPC(Electronic Product Code). The tags in a company or manufacturer have similar tag IDs with the same prefix. Unnecessary collisions occur while identifying multiple tags using Query Tree protocol. It results in growth of query-responses and idle time, which the identification time significantly increases. To solve this problem, Collision Tree protocol and M-ary Query Tree protocol have been proposed. However, in Collision Tree protocol and Query Tree protocol, only one bit is identified during one query-response. And, when similar tag IDs exist, M-ary Query Tree Protocol generates unnecessary query-responses. In this paper, we propose Adaptive M-ary Query Tree protocol that improves the identification performance using m-bit recognition, collision information of tag IDs, and prediction technique. We compare our proposed scheme with other Tree-based protocols under the same conditions. We show that our proposed scheme outperforms others in terms of identification time and identification efficiency.

Current status and future of insect smart factory farm using ICT technology (ICT기술을 활용한 곤충스마트팩토리팜의 현황과 미래)

  • Seok, Young-Seek
    • Food Science and Industry
    • /
    • v.55 no.2
    • /
    • pp.188-202
    • /
    • 2022
  • In the insect industry, as the scope of application of insects is expanded from pet insects and natural enemies to feed, edible and medicinal insects, the demand for quality control of insect raw materials is increasing, and interest in securing the safety of insect products is increasing. In the process of expanding the industrial scale, controlling the temperature and humidity and air quality in the insect breeding room and preventing the spread of pathogens and other pollutants are important success factors. It requires a controlled environment under the operating system. European commercial insect breeding facilities have attracted considerable investor interest, and insect companies are building large-scale production facilities, which became possible after the EU approved the use of insect protein as feedstock for fish farming in July 2017. Other fields, such as food and medicine, have also accelerated the application of cutting-edge technology. In the future, the global insect industry will purchase eggs or small larvae from suppliers and a system that focuses on the larval fattening, i.e., production raw material, until the insects mature, and a system that handles the entire production process from egg laying, harvesting, and initial pre-treatment of larvae., increasingly subdivided into large-scale production systems that cover all stages of insect larvae production and further processing steps such as milling, fat removal and protein or fat fractionation. In Korea, research and development of insect smart factory farms using artificial intelligence and ICT is accelerating, so insects can be used as carbon-free materials in secondary industries such as natural plastics or natural molding materials as well as existing feed and food. A Korean-style customized breeding system for shortening the breeding period or enhancing functionality is expected to be developed soon.

Rainfall image DB construction for rainfall intensity estimation from CCTV videos: focusing on experimental data in a climatic environment chamber (CCTV 영상 기반 강우강도 산정을 위한 실환경 실험 자료 중심 적정 강우 이미지 DB 구축 방법론 개발)

  • Byun, Jongyun;Jun, Changhyun;Kim, Hyeon-Joon;Lee, Jae Joon;Park, Hunil;Lee, Jinwook
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.6
    • /
    • pp.403-417
    • /
    • 2023
  • In this research, a methodology was developed for constructing an appropriate rainfall image database for estimating rainfall intensity based on CCTV video. The database was constructed in the Large-Scale Climate Environment Chamber of the Korea Conformity Laboratories, which can control variables with high irregularity and variability in real environments. 1,728 scenarios were designed under five different experimental conditions. 36 scenarios and a total of 97,200 frames were selected. Rain streaks were extracted using the k-nearest neighbor algorithm by calculating the difference between each image and the background. To prevent overfitting, data with pixel values greater than set threshold, compared to the average pixel value for each image, were selected. The area with maximum pixel variability was determined by shifting with every 10 pixels and set as a representative area (180×180) for the original image. After re-transforming to 120×120 size as an input data for convolutional neural networks model, image augmentation was progressed under unified shooting conditions. 92% of the data showed within the 10% absolute range of PBIAS. It is clear that the final results in this study have the potential to enhance the accuracy and efficacy of existing real-world CCTV systems with transfer learning.