• Title/Summary/Keyword: 안테나 방사 패턴

Search Result 493, Processing Time 0.021 seconds

Design of U-Slot $2{\times}2$ array microstrip wideband antenna for wireless LAN (무선랜용 U-Slot $2{\times}2$ 배열 마이크로스트립 광대역 안테나 설계)

  • Ju Seong-nam;Kim Kab-ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.374-379
    • /
    • 2006
  • In this paper, the high Gain and the wideband microstrip patch antenna, which is applicable to 5 GHz band wireless LAN, is designed and fabricated. Firstly to widen the bandwidth of microstrip antenna, U-Slot in rectangular form patch is inserted and used the microstrip line-Coaxial probe feeding method. Secondly, the antenna gain is improved to be embodied in $2{\times}2$ array form. As a result, in this paper, is designed and fabricated 5 GHz Band wideband U-Slot $2{\times}2$ array patch antenna using microstrip line-coaxial probe feeder. The U-Slot $2{\times}2$ array patch antenna were fabricated on the PEC using press-technique that is based on the simulation results. And the Anritsu 37169A vector network analyzer has been used in measurement of a prototype antenna. As a result, it was measured that the superior characteristic of wideband showing approximately 1 GHz ($5.110 GHz{\sim} 6.142 GHz$) of input return loss (VSWR < 2) in resonant frequency of 5 GHz band. And the antenna gain is 13 dBi, in both the E-plane and H-plane measured at 5.15 GHz, 5.35 GHz, 5.50 GHz, and 5.87 GHz.

Design and Fabrication of WLAN / UWB Antenna for Marine High Speed Communication Network System (해양 초고속 통신망 시스템을 위한 WLAN(Wireless Local Area Network) / UWB(Ultra Wide Band)용 안테나 설계 및 제작)

  • Hong, Yong-Pyo;Kang, Sung-Woon;Kim, Kab-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.489-495
    • /
    • 2018
  • In this paper, we designed and fabricated WLAN / UWB communication antennas operating at 3.3 [GHz] and 5 [GHz] bands in order to effectively use the high-speed communication network system that improved antenna miniaturization, gain and radiation pattern. Microstrip patch antennas were chosen to improve the bandwidth. The slot width, length, and transmission line width were calculated using the theoretical formula for each step. Simulation results show that the return loss is -14.053 [dB] at 3.3 [GHz] and -13.118 [dB] at 5 [GHz]. The gain showed a value of 2.479 [dBi] at 3.3 [GHz] and a value of 3.317 [dBi] at 5 [GHz]. After optimizing it with the CST Microwave Studio 2014 program, which can be 3D-designed, Based on these results, we investigated the performance of antennas by measuring their characteristics. In recent years, WLAN, which is a variety of wireless technologies that are continuously developing, and UWB, which is a communication technology which is increasing in frequency band due to an increase in demand of the technology users, is used for a high speed wireless communication system. Communication seems to be possible.

Location Estimation Algorithm Based on AOA Using a RSSI Difference in Indoor Environment (실내 환경에서 RSSI 차이를 이용한 AOA 기반 위치 추정 알고리즘)

  • Jung, Young-Jin;Jeon, Min-Ho;Ahn, Jeong-Kil;Lee, Jung-Hoon;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.558-563
    • /
    • 2015
  • There have recently been various services that use indoor location estimation technologies. Representative methods of location estimation include fingerprinting and triangulation, but they lack accuracy. Various kinds of research which apply existing location estimation methods like AOA, TOA, and TDOA are being done to solve this problem. In this paper, we study the location estimation algorithm based on AOA using a RSSI difference in indoor environments. We assume that there is a single AP with four antennas, and estimate the angle of arrival based on the RSSI value to apply the AOA algorithm. To compensate for RSSI, we use a recursive averaging filter, and use the corrected RSSI and the Pythagorean theorem to estimate the angle of arrival. The results of the experiment, show an error of 18% because of the radiation pattern of the four non-directional antennas arranged at narrow intervals.

Feasibility Study of Forward-Looking Imaging Radar Applicable to an Unmanned Ground Vehicle (무인 차량 탑재형 전방 관측 영상 레이다 가능성 연구)

  • Sun, Sun-Gu;Cho, Byung-Lae;Park, Gyu-Churl;Nam, Sang-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1285-1294
    • /
    • 2010
  • This study describes the design and verification of short range UWB(Ultra Wideband) imaging radar that is able to display high resolution radar image for front area of a UGV(Unmanned Ground Vehicle). This radar can help a UGV to navigate autonomously as it detects and avoids obstacles through foliage. We describe the relationship between bandwidth of transmitting signal and range resolution. A vivaldi antenna is designed and it's radiation pattern and reflection are measured. It is easy to make array antenna because of small size and thin shape. Aperture size of receiving array antenna is determined by azimuth resolution of radar image. The relation of interval of receiving antenna array, image resolution and aliasing of target on a radar image is analyzed. A vector network analyzer is used to obtain the reflected signal and corner reflectors as targets are positioned at grass field. Applicability of the proposed radar to UGV is proved by analysis of image resolution and penetrating capability for grass in the experiment.

Characteristics of Microwave Propagation for the ETC System (ETC 시스템에서의 마이크로파 전파 특성)

  • 배창호;정희창;김영주;장호성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5A
    • /
    • pp.696-701
    • /
    • 2000
  • Electronic Toll Collection (ETC) System makes the telecommunication possible between the Beacon and the On Board Unit(OBU) for automatic toll collection. In this paper, the propagation path of microwave is modelled and the induced voltage of receiving antenna is analyzed numerically according to multi-path fading effect. In our modelling, we consider frequency, weather condition, polarization and antenna radiation pattern. Also, we suggest the diversity technique in order to reduce the fading effect. In the resuts, the fading effect is reduced significantly in case of the vertical polarization at the rain condition. In general the circular polarization is the most desirable in this application. The antenna which has the high directivity, is also desirable. Using the space and frequency diversity technique at the Beacon, the fading effect is reduced effectively. These results are compared with our experimental data.

  • PDF

Design of Wideband Planar Inverted-F Antenna Using Two-Layer Patches and Modified Ground Structure (이중층 패치와 부분 제거된 접지면을 이용한 광대역 평판형 역 F 안테나의 설계)

  • Lee, Kwang-Jae;Lee, Young-Hee;Kang, Yeon-Duk;Lee, Taek-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.9
    • /
    • pp.1015-1022
    • /
    • 2007
  • In this paper, we proposed a wideband design of planar inverted-F antenna(PIFA) using two-layer, patches and modified ground structure. The antenna consists of two layer patches with common feed and modified ground plane to control resonance frequency and antenna input impedance. The measured bandwidth is 1,492 MHz(BW: 67.7 %, 1,457${\sim}2,949$ MHz) for VSWR<2, and 1,170 MHz(BW: 21 %, 4,970${\sim}$6,140 MHz) for VSWR<2.5. It covers service bands of DCS1800, DCS1900, UMTS(WCDMA), WiBro, WLAN(IEEE 802.11b), satellite DMB. WLAN(IEEE 802.11a) in Korea and radiation patterns shows constant figure with frequency change.

The Study of Microwave Propagation Model for the Active ETC System (능동방식 ETC 시스템을 위한 마이크로파 전파 모델 연구)

  • 배창호;정희창;김영주;장호성
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.101-105
    • /
    • 1999
  • Electronic Toll Collection(ETC) System makes the telecommunication possible between the Beacon and the On Board Unit(OBU) in vehicle at the highway. In this paper, the propagation path of microwave is modelled and the induced voltage of receiving antenna is analyzed numerically according to multi-path fading effort. In this modelling, we consider the weather condition, polarization and antenna radiation pattern. Also, we suggest the diversity technique in order to re duce the fading effect. In the result, the lading effort is reduced significantly in case of the vertical polarization at the rain condition. The circular polarization is the most desirable in this application. The antenna which has the high directivity, is also desirable. Using the space diversity technique at the Beaten, the fading effect is reduced as the distance increases between the Beacon and OBU. These results are presented at the graphs whose axes are related to the magnitude of received voltage(dB) and the distance of the beacon and a vehicle.

  • PDF

Design and Manufacture of Triple-Band Antennas with Two Branch Line and a Vertical Line for WLAN/WiMAX system applications (2개 분기선로와 수직 선로를 갖는 WLAN/WiMAX 시스템에 적용 가능한 삼중대역 안테나 설계 및 제작)

  • Choi, Tae-Il;Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.6
    • /
    • pp.740-747
    • /
    • 2019
  • In this paper, an antenna applicable to WLAN and WiMAX frequency bands is designed, fabricated, and measured. The proposed antenna is designed to have two branch strip line in the patch plane and a rectangular slit in the ground plane based on microstrip feeding for triple band characteristics and added a vertical strip in the ground plane to enhance impedance bandwidth characteristics. The proposed antenna is designed on a substrate with a relative permittivity of 4.4, a thickness of 1.0 mm, and has a size of $18.0mm(W1){\times}37.3mm$ (L4+L5+L7). From the fabricated and measured results, impedance bandwidths of 480 MHz (2.32 to 2.80 GHz) for 2.4/2.5 GHz band, 810 MHz (3.22 to 4.03 GHz) for 3.5 GHz band, and 1,820 MHz (5.05 to 6.87 GHz) for 5.0 GHz band were obtained based on the impedance bandwidth. Measured 3D pattern and gains are displayed.

The Effect of Directivity of Antenna for the Evaluation of Abnormal Area Using Ground Penetrating Radar (지하투과레이더를 이용한 이상구간 평가 시 안테나 지향성의 영향)

  • Kang, Seonghun;Lee, Jong-Sub;Lee, Sung Jin;Park, Young-Kon;Hong, Won-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.11
    • /
    • pp.21-34
    • /
    • 2017
  • The ground penetrating radar (GPR) signal can be measured with different amplitudes according to the directivity, so the directivity of the antenna should be considered. The objective of this study is to investigate the directivity of antenna by analyzing the reflection characteristics of electromagnetic waves radiated from the antenna, and to evaluate effective range of angle that can inspect an abnormal area according to the directivity of antenna. For the measurement of the directivity, a circular metal bar is used as reflector and the signals are measured by changing the angle and the distance between reflector and antenna in the E- and H-plane. The boundary distance between the near field and the far field is determined by analyzing the amplitudes of reflected signals, and two points with different distances from each of near and far fields are designated to analyze radiation patterns in near and far fields. As a result of radiation pattern measurement, in the near field, minor lobes are observed at angle section at more than $50^{\circ}$ in both E- and H-plane. Therefore, antenna has the directivity for the direction of main lobe and minor lobes in near field. In the far field, antenna has the directivity for a single direction of main lobe because minor lobes are not observed. The amplitude of the signal reflected from the near field is unstable, but it can be distinguished from noise. Therefore, in the near field, the ground anomaly can be detected with high reliability. On the other hand, the amplitude of the signal reflected from the far field is stable, but it is hard to distinguish between reflected signal and noise because of the excessive loss of electromagnetic wave. The analyses of directivity in the near and the far fields performed in this study may be effectively used to improve the reliability of the analyses of abnormal area.

3-Dimensinal Microstrip Patch Antenna for Miniaturization (소형화를 위한 3차원 구조마이크로스트립 패치 안테나)

  • 송무하;우종명
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.2
    • /
    • pp.157-167
    • /
    • 2003
  • In this paper, to reduce the resonant length of patch, microstrip patch antenna of linear polarization which is suppressed at two radiation edges is designed and fabricated at the frequency of 1.575 GHz. The result is like that the resonant length of patch is 45 mm and the length reduction effect is 43.8 % when it is compared with that(80 mm) of plane type. The gain is 4.4 dBd and -3 dB beamwidths are 112$^{\circ}$ and 66$^{\circ}$ in the E-plane and H-plane, respectively. Also, to reduce the size of patch, microstrip patch antennas those are suppressed at four radiating comers are designed and fabricated at the same frequency in the linear and circular polarization, respectively. For linear polarization, at the 1.2 of width/length(W/L) ratio, the patch area is 53 mm $\times$ 63.6 mm and the size reduction effect is 56.1 % when compared with that(80 mm $\times$ 96 mm) of plane type. The gain is 4.3 dBd and the -3 dB beamwidths are 120$^{\circ}$ and 78$^{\circ}$ in the E-plane and H-plane, respectively. For circular polarization, the patch size(54.2 mm $\times$ 61.5 mm) is reduced by 47.2 % than that(76 mm $\times$ 83 mm) of plane type. -3 dB beamwidth of horizontal polarization in the z-x plane and vortical polarization in the y-z plane are 108$^{\circ}$ and 93$^{\circ}$, respectively and this means the increasement in both planes by 52$^{\circ}$ and 27$^{\circ}$ than those of plane type. The maximum gain is 2.5 dBd in the horizontal polarization in the z-x plane. Axial ratio is 1.5 dB at 1.575 GHz and the 2 dB axial ratio bandwidth(ARBW) is 20 MHz(1.3 %).