• Title/Summary/Keyword: 안테나 급전 구조

Search Result 447, Processing Time 0.024 seconds

A study on the Enhancement of Gain and Axial Ratio Bandwidth of the Multilayer CP-DRA (다층 CP-DRA의 이득 및 축비대역폭 증대에 관한 연구)

  • Lee, Ho-Sang;Jo, Dong-Ki;Jung, Young-Ho;Kim, Cheol-Bok;Son, Ho-Cheol;Lee, Mun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.7
    • /
    • pp.52-60
    • /
    • 2009
  • In this pater, a CP-DRA(Circularly Polarized Dielectric Resonator Antenna) using cross-slot-feed is studied to enhance the gain and axial ratio bandwidth. First, a single layer CP-DRA is studied as a reference for comparison. Then a new type of multilayer CP-DRA is proposed to enhance the gain and axial ratio bandwidth. In consideration of the antenna gain enhancement, the spacing between the elements of the multilayer CP-DRA is examined through analysis of the radiation performance of a 2$\times$2 planar amy of DRAs with a spacing of 0.7$\lambda_0$ and 1.2$\lambda_0$ using CST Microwave Studio. The measured result shows that the gain and bandwidth of the multilayer structure is approximately twice that of the single layer one. In the case of the array antenna in which the spacing between multilayer CP-DRA element is 1.2$\lambda_0$, a grating lobe is reduced, in contrast to what we can expect from a conventional antenna array. The gain is 13.4dBi and axial ratio bandwidth is 0.8GHz.

Design and Manufacture of Triple-Band Antennas with Modified Rectangular Ring and Rectangular Patch for WLAN/WiMAX system applications (변형된 사각 링과 사각 패치를 갖는 WLAN/WiMAX 시스템에 적용 가능한 삼중대역 안테나 설계 및 제작)

  • Kim, Woo-Su;Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.3
    • /
    • pp.341-348
    • /
    • 2019
  • In this paper, a monopole type antenna applicable to WLAN and WiMAX standard frequency bands is designed and fabricated. The proposed antenna is designed to have rectangular ring and rectangular patch based on microstrip feeding for triple band characteristics and inserted two stub in the top of the rectangular ring patch to enhance impedance bandwidth characteristics. The proposed antenna has $18.0mm(2W_1+W_2){\times}33.0mm(L_7+L_8+L_9)$ on a dielectric substrate of $27.0mm(W_1){\times}44mm(L_1){\times}1.0mm$ size. From the fabrication and measurement results, impedance bandwidths of 660MHz (2,08 to 2.74GHz) for 2.4/2.5MHz band, 488MHz (3.40 to 3.88GHz) for 3.5MHz band, and 2,180MHz (4.61 to 6.79GHz) for 5,000MHz band were obtained based on the impedance bandwidth. The proposed antenna also obtained the measured gain and radiation pattern in the anechoic chamber.

A Study of Center Longitudinal Shunt-Series Coupling Slot Fed by Asymmetric Compound Iris for Waveguide Slot Coupler (도파관 슬롯 커플러용 비대칭 복합 아이리스에 의해 급전되는 중심 종방향 션트-시리즈 결합 슬롯에 관한 연구)

  • Kim, Byung-Mun;Ko, Ji-Hwan;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.6
    • /
    • pp.586-594
    • /
    • 2013
  • This paper proposes a new coupling element of microwave slot coupler for designing waveguide slot array which can reduce the effect of undesired higher order mode coupling between coupling and radiating slots in the branch waveguide. The proposed device is composed of a centered longitudinal shunt-series coupling slot at the center of broad wall shared by two crossed rectangular waveguides and an asymmetric compound iris that excites the coupling slot. We first have obtained scattering parameters for the proposed coupler by use of EM S/W tool HFSS and then extracted the parameters of T- network equivalent circuit for the coupling slot. We also have analyzed the resonant properties such as resonant length and normalized admittance by changing the geometrical dimensions. The measured results for the fabricated coupler with short-circuited block ${\lambda}_g/4$ away from the coupling slot are well agreed with the simulated ones.

Design and Fabrication of a Quadruple Band Antenna for WLAN/WiMAX Systems (900 MHz 대역을 포함한 WLAN/WiMAX 시스템에 적용 가능한 4중대역 안테나 설계 및 제작)

  • Park, Sang-wook;Choi, Tea-Il;Choi, Young-kyu;Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1240-1247
    • /
    • 2019
  • In this paper, we designed a four-band antenna that can be applied to WLAN and WiMAX systems by designing a microstrip feeding structure, four branch lines and a slit on the ground plane. The proposed antenna is designed with a size of 16.0 mm (W1) × 48.0 mm (L8) on a dielectric substrate of 18.0 mm (W) × 50.0 mm (L) × 1.0 mm(h). and a slit of 2.9 mm (W7) × 4.0 mm (L7) is inserted into the ground plane of 18.0 mm (W) × 18.7 mm (L6). Based on -10 dB production and measurement results, it obtained 60.8 MHz (8,730~9,338 MHz), 310 MHz (2.33~2.64 GHz) in the 2.4 GHz band, 420MHz (3.39~3.81 GHz) in the 3.4 GHz band, and 2,070 MHz (4.62~6.69 GHz) in the 5.0 GHz. In addition, the gain and radiation pattern characteristics of the quadrant band are measured from the measurement results anechoic chamber.

Transmitter Design for Earth Station Terminal Operating with Military Geostationary Satellites on Ka-band (Ka 대역 군위성통신 지상단말 송신기 설계)

  • Kim, Chun-Won;Park, Byung-Jun;Yoon, Won-Sang;Lee, Seong-Jae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.393-400
    • /
    • 2014
  • In this paper, we have designed the transmitter for earth station terminal operating with military geostationary satellite on Ka-band that is complied with MIL-STD-188-164A. The designed antenna of this terminal is dual-offset gregorian reflector which is consist of corrugated horn and iris polarizer, othermode transducer. This antenna meets radiation pattern and transmit EIRP spectral density requirements in this standard. The designed RF systems of this terminal are consist of Block Up Converter(BUC) converting frequency band from IF to Ka band and SSPA having low-power consumption and compact light-weight using the pHEMT MMIC compound devices. This RF systems applied with VSWR, spurious/harmonic suppression, output flatness and phase noise requirement in this standard.

H-Plane 8-Way Rectangular Waveguide Power Divider Using Y-Junction (Y-Junction을 이용한 H-평면 8-Way 구형 도파관 전력 분배기)

  • Lee, Sang-Heun;Yoon, Ji-Hwan;Yoon, Young-Joong;Kim, Jun-Yeon;Lee, Woo-Sang;Park, Seul-Gi
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.151-158
    • /
    • 2012
  • This paper proposes a H-plane 8-way rectangular waveguide power divider using Y-junction. A general N-way power divider can be composed of multi-stage T-junctions. However, if the distances of output ports are close, the matching characteristic is not improved by using only T-junctions because of space limitation. In this case, since other types of 3-port junctions should be used to final output stage, Y-junctions are used with T-junctions in this paper. The proposed Y-junction uses the tapered-line impedance transformer and inductive irises to improve impedance matching characteristic. The 8-way power divider using Y-junction is fabricated and measured. The measured return loss and insertion loss from input port to output port are -30.8 dB and -9.3 dB at operating frequency, respectively. The measured maximum phase difference is about $1^{\circ}$. Therefore, the proposed power divider will be useful to apply to various microwave systems, which need to divide the input power equally, such as feed networks for array antennas.

Development of Planar Active Electronically Scanned Array(AESA) Radar Prototype for Airborne Fighter (항공기용 평면형 능동 전자주사식 위상 배열(AESA) 레이더 프로토 타입 개발)

  • Chong, Min-Kil;Kim, Dong-Yoon;Kim, Sang-Keun;Chon, Sang-Mi;Na, Hyung-Gi
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.12
    • /
    • pp.1380-1393
    • /
    • 2010
  • This paper presents a design, fabrication and the test results of planar active electronically scanned array(AESA) radar prototype for airborne fighter applications using transmit/receive(T/R) module hybrid technology. LIG Nex1 developed a AESA radar prototype to obtain key technologies for airborne fighter's radar. The AESA radar prototype consists of a radiating array, T/R modules, a RF manifold, distributed power supplies, beam controllers, compact receivers with ADC(Analog-to-Digital Converter), a liquid-cooling unit, and an appropriate structure. The AESA antenna has a 590 mm-diameter, active-element area capable of containing 536 T/R modules. Each module is located to provide a triangle grid with $14.7\;mm{\times}19.5\;mm$ spacing among T/R modules. The array dissipates 1,554 watts, with a DC input of 2,310 watts when operated at the maximum transmit duty factor. The AESA radar prototype was tested on near-field chamber and the results become equal in expected beam pattern, providing the accurate and flexible control of antenna beam steering and beam shaping.