Browse > Article
http://dx.doi.org/10.6109/jkiice.2019.23.3.341

Design and Manufacture of Triple-Band Antennas with Modified Rectangular Ring and Rectangular Patch for WLAN/WiMAX system applications  

Kim, Woo-Su (Korea Evaluation Institute of Industrial Technology)
Yoon, Joong-Han (Division of Smart Electrical and Electronic Engineering, Silla University)
Abstract
In this paper, a monopole type antenna applicable to WLAN and WiMAX standard frequency bands is designed and fabricated. The proposed antenna is designed to have rectangular ring and rectangular patch based on microstrip feeding for triple band characteristics and inserted two stub in the top of the rectangular ring patch to enhance impedance bandwidth characteristics. The proposed antenna has $18.0mm(2W_1+W_2){\times}33.0mm(L_7+L_8+L_9)$ on a dielectric substrate of $27.0mm(W_1){\times}44mm(L_1){\times}1.0mm$ size. From the fabrication and measurement results, impedance bandwidths of 660MHz (2,08 to 2.74GHz) for 2.4/2.5MHz band, 488MHz (3.40 to 3.88GHz) for 3.5MHz band, and 2,180MHz (4.61 to 6.79GHz) for 5,000MHz band were obtained based on the impedance bandwidth. The proposed antenna also obtained the measured gain and radiation pattern in the anechoic chamber.
Keywords
modified rectangular ring; rectangular patch; triple band; WLAN/WiMAX application;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 D. S. Kim,and J. H. Yoon, "esign and manufacture of modified circular ring antenna for WLAN/WiMAX applications," Journal of the Korea Institute of Information and Communication Engineering, vol. 18, no. 2, pp. 268-275, Feb. 2014.   DOI
2 J. H. Yoon, S. J. Ha, and T. C. Rhee, "novel monopole antenna with two arc-shaped strips for WLAN/WiMAX applications," Journal of Electromagnetic engineering and Science, vol. 15, no. 1, pp. 6-13, Jan. 2015.   DOI
3 W. S. Kim and J. H. Yoon, "A design for a CPW-fed monopole antenna with two modified half circular rings for WLAN/WiMAX operations," Journal of Information and Communication Convergence Engineering, vol. 13, no. 3, pp. 159-166, Sep. 2015.   DOI
4 L Li. X. Zhang, X. Yin, and L. Zhou, "A compact triple band printed monopole antenna for WLAN and WiMAX applications," IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1853-1855, 2016.   DOI
5 A. K. Gautam, L. Kumar, B. K. Kanaujia, and K. Rambabu, "Design of compact F-shaped slot triple band antenna for WLAN/WiMAX applications," IEEE Transactions on Antennas and Propagation, vol. 64, no. 3, pp. 1101-1105, Mar. 2016.   DOI
6 M. M. Fakharian, and P. Rezaei, "Design of split ring antennas for WLAN and WiMAX applications," Microwave and Optics Technology Letters, vol. 58, no. 9, pp. 2117-2122, Sep. 2016.   DOI
7 M. A. Khaidi, "A highly compact multiband antenna of Bluetooth/WLAN, WiMAX, and WiFi applications," Microwave and Optics Technology Letters, vol. 59, no. 1, pp. 77-80, Jan. 2017.   DOI
8 J. H. Yeo, and J. L. Lee, "Compact dual band half ring shpaed bent slot antenna for WLAN and WiMAX 348 applications," Journal of Information and Communication Convergence Engineering, vol. 15, no. 4, pp. 199-204, Dec. 2017.   DOI
9 M. O. Sallam, S. M. Kandil, V. Vlosik, G. A. E. Vandenboshch, and E. Soliman, "Wideband CPW-fed flexible bow tie slot antenna for WLAN/WiMAX applications," IEEE Transactions on Antennas and Propagation, vol. 65, no. 8, pp. 4274-4277, Aug. 2017.   DOI
10 B. Mohamadzade and A. Rezaee, "Compact and braodband dual sleeve monopole antenna for GSM, WLAN and WiMAX applications," Microwave and Optics Technology Letters, vol. 59, no. 6, pp. 4274-4277, June 2017.
11 T. Ali and R. C. Biradar, "A triple band highly miniaturized antenna for WLAN/WiMAX applications," Microwave and Optics Technology Letters, vol. 60, no. 1, pp. 466-471, Jan. 2018.   DOI
12 Ansoft High Frequency Structure Simulator (HFSS) Version 10.0, Ansoft Corporation, 2005.
13 J. H. Yoon, Y. C. Rhee, and W. S, Kim, " Rectangular Ring Open-Ended Monopole Antenna with Two Symmetric Strips for WLAN and WiMAX Applications," International Journal of Antennas and Propagation, vol. 2013, Article ID 109450 1-9.
14 B. H. Jeong, S. H. Jang, S. L. Yoon, and D. H. Kim, "Development direction of WLAN technology treads to IEEE 802.11ax standardization," Electronics and Telecommunications Trends, vol. 27, no. 2, pp. 1-10, 2012.
15 J. H. Son, U. J. An, J. J. Ko, and K. S. Kwak, "Recent tread to IEEE 802.11ax next-generation WLAN standardization," Electronics and Telecommunications Trends, vol. 31, no. 10, pp. 3-9, 2016.
16 World Wide Interoperability for microwave access forum or WiMAX forum [Internet]. Available: http://www.wimaxfroum.org.
17 Y. Han, Y. Z. Yin, Y. Q. Wei, Y. Zhao, B. Li, and X. N. Li, "A novel triple band monopole antenna with double coupled C-shaped strips for WiMAX/WLAN applications," Journal of Electromagnetic Waves and Applications, vol. 25, no. 8-9, pp. 1308-1316, Apr. 2012.   DOI
18 Y. F. Wang, B. H. Sun, K. He, R. H. Li, and Y. J. Wang, "A compact tri-band antenna for WLAN/WiMAX applications," Microwave and Optical Technology Letters, vol. 53, no. 10, pp. 2371-2375, Oct. 2011.   DOI
19 X. Li, W. Hu, Y. F. Wang, X. W. Shi, and X. T. Gu, "Printed triple band rectangular ring monopole antenna with symmetrical L strips for WLAN/WiMAX applications," Microwave and Optical Technology Letters, vol. 54, no. 4, pp. 1049-1052, Apr. 2012.   DOI
20 J. H. Yoon, Y. C. Rhee, and Y. K, Jang, "Compact monopole antenna design for WLAN/WiMAX triple-band operations," Microwave and Optical Technology Letters, vol. 54, no. 8, pp. 1838-1846, Aug. 2012.   DOI