• Title/Summary/Keyword: 안정화 $NaBH_4$ 용액

Search Result 4, Processing Time 0.017 seconds

The study on characteristics of solid-state NaBH4 hydrogen generation and supply system for fuel cell UAV (연료전지 UAV를 위한 고체 상태 NaBH4 수소 발생 및 공급 시스템의 특성 연구)

  • Lee, Chung-Jun;Kim, Tae-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.10
    • /
    • pp.901-909
    • /
    • 2012
  • This paper describes characteristics of solid-state $NaBH_4$ hydrogen generation and supply system for fuel cell UAV. Flow rate and pressure of the generated hydrogen were dramatically changed during $NaBH_4$ decomposition using acid. Hydrogen supply was stabilized by a self-pressurized reactor, and hydrogen stabilization method was introduced. For hydrogen generation in below zero-temperature, hydrochloric acid was diluted by propylene glycol-water mixtures. Solid-state $NaBH_4$hydrogen generation and supply system was designed. Basic operation experiments was performed to reveal the characteristics of this hydrogen generation system.

Characteristics of Al Alloy as a Material for Hydrolysis Reactor of NaBH4 (NaBH4 가수분해 반응기 소재로서 알루미늄 합금의 특성 연구)

  • Jung, Hyeon-Seong;Oh, Sung-June;Jeong, Jae-Jin;Na, Il-Chai;Chu, Cheun-Ho;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.677-681
    • /
    • 2015
  • Aluminum alloy was examined as a material of low weight reactor for hydrolysis of $NaBH_4$. Aluminum is dissolved with alkali, but there is NaOH as a stabilizer in $NaBH_4$ solution. To decrease corrosion rate of aluminum, decrease NaOH concentration and this result in loss of $NaBH_4$ during storage of $NaBH_4$ solution. Therefore stability of $NaBH_4$ and corrosion of aluminum should be considered in determining the optimum NaOH concentration. $NaBH_4$ stability and corrosion rate of aluminum were measured by hydrogen evolution rate. $NaBH_4$ stability was tested at $20{\sim}50^{\circ}C$ and aluminum corrosion was measured at $60{\sim}90^{\circ}C$. The optimum concentration of NaOH was 0.3 wt%, considering both $NaBH_4$ stability and aluminun corrosion. $NaBH_4$ hydrolysis reaction continued 200min in aluminum No 6061 alloy reactor with 0.3 wt% NaOH at $80{\sim}90^{\circ}C$.

Study on the Stability of NaBH4 Solution during Storage Process (NaBH4수용액 저장과정 중 안정성에 관한 연구)

  • Sim, Woojong;Jo, Jaeyoung;Choi, Daeki;Nam, Sukwoo;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.322-326
    • /
    • 2010
  • Stability of sodium borohydride solution during storage was studied. In order to enhance the $NaBH_4$ stability, NaOH and KOH were added to the $NaBH_4$ solution. The effect of concentration of the borohydride and alkaline solution, temperature and materials of storage vessels on the rate of borohydride hydrolysis was investigated. The rate of hydrogen evolution decreased as the concentration of alkaline increased due to increase of $NaBH_4$ stability in the solution. The stability of $NaBH_4$ solution decreased when the borohydride concentration raised from 10 to 15 wt% and then increased when the $NaBH_4$ concentration increased above 15 wt% due to increase in the pH of the concentrated solution. The activity coefficient of hydrolysis of $NaBH_4$ solution(NaOH 3.0 wt%, $NaBH_4$ 25 wt%) was 115.1 kJ/mol and this value was 1.5~4.0 times higher than that of hydrolysis of $NaBH_4$ solution with catalyst. The borohydride solutions in glass and stainless-steel vessel were more stable than the solution in plastic(PE) vessel.

Planar, Air-breathing PEMFC Systems Using Sodium Borohydride ($NaBH_4$를 이용만 공기호흡형 수소연료전지에 대한 연구)

  • Kim, Jin-Ho;Hwang, Kwang-Taek
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.4
    • /
    • pp.300-308
    • /
    • 2009
  • In a pursuit of the development of alternative mobile power sources with a high energy density, a planar and air-breathing PEMFCs with a new type of hydrogen cartridge which uses onsite $H_2$ generated from sodium borohydride ($NaBH_4$) hydrolysis have been investigated for use in advanced power systems. Two types of $H_2$ generation through $NaBH_4$ hydrolysis are available: (1) using organic acids such as sulphuric acid, malic acid, and sodium hydrogen carbonate in aqueous solution with solid $NaBH_4$ and (2) using solid selected catalysts such as Pt, Ru, CoB into the stabilized alkaline $NaBH_4$ solution. It might therefore be relevant at this stage to evaluate the relative competitiveness of the two methods mentioned above. The effects of flow rate of stabilized $NaBH_4$ solution, MEA (Membrane Electrode Assembly) improvement, and type and flow control of the catalytic acidic solution have been studied and the cell performances of the planar, air-breathing PEMFCs using $NaBH_4$ has been measured from aspects of power density, fuel efficiency, energy density, and fast response of cell. In our experiments, planar, air-breathing PEMFCs using $NaBH_4$ achieved to maximum power density of 128mW/$cm^2$ at 0.7V and energy efficiency of 46% and has many advantages such as low operating temperature, sustained operation at a high power density, compactness, the potential for low cost and volume, long stack life, fast star-up and suitability for discontinuous operation.