• Title/Summary/Keyword: 안전구조물

Search Result 2,058, Processing Time 0.031 seconds

Estimation of the Lowest and Highest Astronomical Tides along the west and south coast of Korea from 1999 to 2017 (서해안과 남해안에서 1999년부터 2017년까지 최저와 최고 천문조위 계산)

  • BYUN, DO-SEONG;CHOI, BYOUNG-JU;KIM, HYOWON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.4
    • /
    • pp.495-508
    • /
    • 2019
  • Tidal datums are key and basic information used in fields of navigation, coastal structures' design, maritime boundary delimitation and inundation warning. In Korea, the Approximate Lowest Low Water (ALLW) and the Approximate Highest High Water (AHHW) have been used as levels of tidal datums for depth, coastline and vertical clearances in hydrography and coastal engineering fields. However, recently the major maritime countries including USA, Australia and UK have adopted the Lowest Astronomical Tide (LAT) and the Highest Astronomical Tide (HAT) as the tidal datums. In this study, 1-hr interval 19-year sea level records (1999-2017) observed at 9 tidal observation stations along the west and south coasts of Korea were used to calculate LAT and HAT for each station using 1-minute interval 19-year tidal prediction data yielded through three tidal harmonic methods: 19 year vector average of tidal harmonic constants (Vector Average Method, VA), tidal harmonic analysis on 19 years of continuous data (19-year Method, 19Y) and tidal harmonic analysis on one year of data (1-year Method, 1Y). The calculated LAT and HAT values were quantitatively compared with the ALLW and AHHW values, respectively. The main causes of the difference between them were explored. In this study, we used the UTide, which is capable of conducting 19-year record tidal harmonic analysis and 19 year tidal prediction. Application of the three harmonic methods showed that there were relatively small differences (mostly less than ±1 cm) of the values of LAT and HAT calculated from the VA and 19Y methods, revealing that each method can be mutually and effectively used. In contrast, the standard deviations between LATs and HATs calculated from the 1Y and 19Y methods were 3~7 cm. The LAT (HAT) differences between the 1Y and 19Y methods range from -16.4 to 10.7 cm (-8.2 to 14.3 cm), which are relatively large compared to the LAT and HAT differences between the VA and 19Y methods. The LAT (HAT) values are, on average, 33.6 (46.2) cm lower (higher) than those of ALLW (AHHW) along the west and south coast of Korea. It was found that the Sa and N2 tides significantly contribute to these differences. In the shallow water constituents dominated area, the M4 and MS4 tides also remarkably contribute to them. Differences between the LAT and the ALLW are larger than those between the HAT and the AHHW. The asymmetry occurs because the LAT and HAT are calculated from the amplitudes and phase-lags of 67 harmonic constituents whereas the ALLW and AHHW are based only on the amplitudes of the 4 major harmonic constituents.

Topographic Placement(Structure) and Macro Benthos Community in Winter for the Shellfish Farm of Namsung-ri, Goheung (고흥 남성리 패류양식장의 지형 구조와 저서생물 현장 조사)

  • Jo, Yeong-Hyun;Kim, Yun;Ryu, Cheong-Ro;Lee, Kyeong-Sig;Lee, In-Tae;Yoon, Han-Sam;Jun, Sue-Kyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.2
    • /
    • pp.175-183
    • /
    • 2010
  • To understand the variation of macro benthos community according to the installation of structure and topographic placement in the shellfish farm on tidal flat, the practical example of the tidal shellfish growing area at Namsung-ri Goheung was observed. The results of the research for the field observation were summarized as follows. (1) The ground gradient of the shellfish farm was very flat below about $1^{\circ}$. The shellfish farm ground took the shape of $\sqcup$ from the shoreline to the place of 150 m seawards, and the shape of $\sqcap$ from there to the low tide line. During ebb tide, the $\sqcup$ shape ground stored the sea water, and the $\sqcap$ shape ground was supposed to act as the effect factor to leak slowly or to prevent the outflow. (2) The oyster shell bag or the type of riprap wall as the boundary in the shellfish farm was classified into five types. The air exposure time and flooding time were 181 and 434 minutes, respectively. (3) In the numerical experiment, the deep-sea water wave coming in the study area had 0.5 m of maximum wave height to show the very stable conditions and the wave direction pattern of S-direction was dominant at Naro great ridge, and SE, SSW and S-direction were distributed strongly around the shellfish farm. (4) By the grain size analysis, the sediment around tidal flat consisted of gravel 0.00~5.81(average 1.70)%, sand 14.15~18.39(average 13.23)%, silt 27.59~47.15(average 30.84)% and clay 35.79~55.73(average 36.19)%, and the sediment type was divided into (g)M(lightly gravelly mud), sM(sandy mud) and gM(gravelly mud) by Folk's diagram. (5) The macro benthos community survey conducted in this site in January, 2010 showed that 1 species of Mollusca, 8 species of Polychaeta and 2 species of Crustacea appeared, and 11 species occupying over 1% of total abundance were dominant.

Motion Analysis of Light Buoys Combined with 7 Nautical Mile Self-Contained Lantern (7마일 등명기를 결합한 경량화 등부표의 운동 해석)

  • Son, Bo-Hun;Ko, Seok-Won;Yang, Jae-Hyoung;Jeong, Se-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.628-636
    • /
    • 2018
  • Because large buoys are mainly made of steel, they are heavy and vulnerable to corrosion by sea water. This makes buoy installation and maintenance difficult. Moreover, vessel collision accidents with buoys and damage to vessels due to the material of buoys (e.g., steel) are reported every year. Recently, light buoys adopting eco-friendly and lightweight materials have come into the spotlight in order to solve the previously-mentioned problems. In Korea, a new lightweight buoy with a 7-Nautical Mile lantern adopting expanded polypropylene (EPP) and aluminum to create a buoyant body and tower structure, respectively, was developed in 2017. When these light buoys are operated in the ocean, the visibility and angle of light from the lantern installed on the light buoys changes, which may cause them to function improperly. Therefore, research on the performance of light buoys is needed since the weight distribution and motion characteristics of these new buoys differ from conventional models. In this study, stability estimation and motion analyses for newly-developed buoys under various environmental conditions considering a mooring line were carried out using ANSYS AQWA. Numerical simulations for the estimation of wind and current loads were performed using commercial CFD software, Siemens STAR-CCM+, to increase the accuracy of motion analysis. By comparing the estimated maximum significant motions of the light buoys, it was found that waves and currents were more influential in the motion of the buoys. And, the estimated motions of the buoys became larger as the sea state became worser, which might be the reason that the peak frequencies of the wave spectra got closer to those of the buoys.

A Structural Analysis of the SNF(Spent Nuclear Fuel) Disposal Canister with the SNF Basket Section Shape Change for the Pressurized Water Reactor(PWR) (고준위폐기물다발의 단면형상 변화에 따른 가압경수로(PWR)용 고준위폐기물 처분용기의 구조해석)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.37-49
    • /
    • 2012
  • A structural model of the SNF(spent nuclear fuel) disposal canister for the PWR(pressurized water reactor) for about 10,000 years long term deposition at a 500m deep granitic bedrock repository has been developed through various structural safety evaluations. The SNF disposal baskets of this canister model have the array type whose four square cross section baskets stand parallel to each other and symmetrically with respect to the center of the canister section. However, whether this developed structural model of the SNF disposal canister is optimal is not determinable yet. Especially, there is still a problem in weight-reduction of the canister. The cross section shape of the SNF basket should be changed to solve this problem. There are two ways in changing the cross section shape of the SNF basket; the one is to rotate the cross section itself and the other is to change the cross section shape as other shape different from the square cross section. The previous study shows that the canister with $30{\sim}35^{\circ}$ rotated basket array is structurally more stable than the canister with un-rotated parallel basket array. However, whether this canister with rotated basket array is optimal is not either determinable as yet, because it is not revealed that the canister with other cross section different from the square cross section is structurally more stable than other canisters. Therefore, the structural analysis of the SNF disposal canister with other cross section shape which is also symmetric with respect to the canister center planes is very necessary. The structural analysis of the canister with various cross section shape basket array in which each basket is arrayed symmetrically with respect to the center planes is carried out in this paper. The structural analysis result shows that the SNF disposal canister with circular cross section shape baskets located symmetrically with respect to the center of the canister section is structurally more stable than the previously developed SNF disposal canister with the parallel basket array.

A study on the structure of the Three storied Stone pagoda in Gameunsa Temple site (감은사지 삼층석탑 구조)

  • Nam, si-jin
    • Korean Journal of Heritage: History & Science
    • /
    • v.38
    • /
    • pp.329-358
    • /
    • 2005
  • The Three storied Stone pagoda in Gameunsa Temple site, one of the early staged stone pagodas, has been known as a standard for Silla stone pagodas. A stone pagoda is not only a stone art work and but also a stone structure. Most studies and investigation of the stone pagoda has done mainly based on style and chronological research according to an art historical view. However, there is not an attempt to research the stone pagoda as a stone architecture. Most Korean experts at the stone pagoda has art history in their background. Engineers who can understand the structure of the stone pagoda are very limited. More architectural and engineering approach is need to research not only art historial understanding but also safety as a structure. We can find many technical know-how from our ancestors who made stone pagodas. 1. To reduce any deformation such as relaxation and sinking of BuJae which is caused by a heavy load, the BuJae (consist of a foundation stone and lower stereobates) should be enlarged. 2. A special construction method for connection between Myonsuk and Tangjoo was invented. This unique method is not used any longer after the Three storied Stone pagoda in Gameunsa Temple site. 3. The upper BuJae and the lower BuJae are missed each other by making a difference of Okgaesuk and Okgaebatchim in size. It is done for a distribution of perpendicular load and a prevention for relaxation of BuJae. 4. The center of gravity in the BuJae is located to the center of the stone pagoda by trimming the upper surface of the Okgaebatchim into a convex shape. The man who made stone pagodas had excellent knowledge on the engineering and techniques to understand the structure of the stone pagodas. We can confirm it as follows: the enlarged BuJae, dislocated connection between upper Bujae and lower BuJae, and moving the center of gravity close to the center of the stone pagoda.

Assessment of Methane Production Rate Based on Factors of Contaminated Sediments (오염퇴적물의 주요 영향인자에 따른 메탄발생 생성률 평가)

  • Dong Hyun Kim;Hyung Jun Park;Young Jun Bang;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.45-59
    • /
    • 2023
  • The global focus on mitigating climate change has traditionally centered on carbon dioxide, but recent attention has shifted towards methane as a crucial factor in climate change adaptation. Natural settings, particularly aquatic environments such as wetlands, reservoirs, and lakes, play a significant role as sources of greenhouse gases. The accumulation of organic contaminants on the lake and reservoir beds can lead to the microbial decomposition of sedimentary material, generating greenhouse gases, notably methane, under anaerobic conditions. The escalation of methane emissions in freshwater is attributed to the growing impact of non-point sources, alterations in water bodies for diverse purposes, and the introduction of structures such as river crossings that disrupt natural flow patterns. Furthermore, the effects of climate change, including rising water temperatures and ensuing hydrological and water quality challenges, contribute to an acceleration in methane emissions into the atmosphere. Methane emissions occur through various pathways, with ebullition fluxes-where methane bubbles are formed and released from bed sediments-recognized as a major mechanism. This study employs Biochemical Methane Potential (BMP) tests to analyze and quantify the factors influencing methane gas emissions. Methane production rates are measured under diverse conditions, including temperature, substrate type (glucose), shear velocity, and sediment properties. Additionally, numerical simulations are conducted to analyze the relationship between fluid shear stress on the sand bed and methane ebullition rates. The findings reveal that biochemical factors significantly influence methane production, whereas shear velocity primarily affects methane ebullition. Sediment properties are identified as influential factors impacting both methane production and ebullition. Overall, this study establishes empirical relationships between bubble dynamics, the Weber number, and methane emissions, presenting a formula to estimate methane ebullition flux. Future research, incorporating specific conditions such as water depth, effective shear stress beneath the sediment's tensile strength, and organic matter, is expected to contribute to the development of biogeochemical and hydro-environmental impact assessment methods suitable for in-situ applications.

Betweenness Centrality-based Evacuation Vulnerability Analysis for Subway Stations: Case Study on Gwanggyo Central Station (매개 중심성 기반 지하철 역사 재난 대피 취약성 분석: 광교중앙역 사례연구)

  • Jeong, Ji Won;Ahn, Seungjun;Yoo, Min-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.407-416
    • /
    • 2024
  • Over the past 20 years, there has been a rapid increase in the number and size of subway stations and underground structures worldwide, and the importance of safety for subway users has also continuously grown. Subway stations, due to their structural characteristics, have limited visibility and escape routes in disaster situations, posing a high risk of human casualties and economic losses. Therefore, an analysis of disaster vulnerabilities is essential not only for existing subway systems but also for deep underground facilities like GTX. This paper presents a case study applying a betweenness centrality-based disaster vulnerability analysis framework to the case of Gwanggyo Central Station. The analysis of Gwanggyo Central Station's base model and various disaster scenarios revealed that the betweenness centrality distribution is symmetrical, following the symmetrical spatial structure of the station, with high centrality concentrated in the central areas of basement levels one and two. These areas exhibited values more than 220% above the average, indicating a high likelihood of bottleneck phenomena during evacuation in disaster situations. To mitigate this vulnerability, scenarios were proposed to distribute evacuation flows concentrated in the central areas, enhancing the usability of peripheral areas as evacuation routes by connecting staircases continuously. This modification, when considered, showed a decrease in centrality concentration, confirming that the proposed addition of evacuation paths could effectively contribute to dispersing the flow of evacuation in Gwanggyo Central Station. This case study demonstrates the effectiveness of the proposed framework for assessing evacuation vulnerability in enhancing subway station user safety and can be effectively applied in disaster response and management plans for major underground facilities.

Is Video-assisted Thoracoscopic Resection for Treating Apical Neurogenic Tumors Always Safe? (흉강 첨부 양성 신경종의 흉강경을 이용한 절제술: 언제나 안전하게 시행할 수 있나?)

  • Cho, Deog Gon;Jo, Min Seop;Kang, Chul Ung;Cho, Kyu Do;Choi, Si Young;Park, Jae Kil;Jo, Keon Hyeon
    • Journal of Chest Surgery
    • /
    • v.42 no.1
    • /
    • pp.72-78
    • /
    • 2009
  • Background: Mediastinal neurogenic tumors are generally benign lesions and they are ideal candidates for performing resection via video-assisted thoracoscopic surgery (VATS). However, benign neurogenic tumors at the thoracic apex present technical problems for the surgeon because of the limited exposure of the neurovascular structures, and the optimal way to surgically access these tumors is still a matter of debate. This study aims to clarify the feasibility and safety of the VATS approach for performing surgical resection of benign apical neurogenic tumors (ANT). Material and Method: From January 1996 to September 2008, 31 patients with benign ANT (15 males/16 females, mean age: 45 years, range: 8~73), were operated on by various surgical methods: 14 VATS, 10 lateral thoracotomies, 6 cervical or cervicothoracic incisions and 1 median sternotomy. 3 patients had associated von Recklinhausen's disease. The perioperative variables and complications were retrospectively reviewed according to the surgical approaches, and the surgical results of VATS were compared with those of the other invasive surgeries. Result: In the VATS group, the histologic diagnosis was schwannoma in 9 cases, neurofibroma in 4 cases and ganglioneuroma in 1 case, and the median tumor size was 4.3 cm (range: 1.2~7.0 cm). The operation time, amount of chest tube drainage and the postoperative stay in the VATS group were significantly less than that in the other invasive surgical group (p<0.05). No conversion thoracotomy was required. There were 2 cases of Hornor's syndrome and 2 brachial plexus neuropathies in the VATS group; there was 1 case of Honor's syndrome, 1 brachial plexus neuropathy, 1 vocal cord palsy and 2 non-neurologic complications in the invasive surgical group, and all the complications developed postoperatively. The operative method was an independent predictor for postoperative neuropathies in the VATS group (that is, non-enucleation of the tumor) (p=0.029). Conclusion: The VATS approach for treating benign ANT is a less invasive, safe and feasible method. Enucleation of the tumor during the VATS procedure may be an important technique to decrease the postoperative neurological complications.

High Dose Rate Interstitial Brachytherapy in Soft Tissue Sarcomas : Technical Aspect (연부조직종양에서 고선량율 조직내 방사선치료: 기술적 측면에서의 고찰)

  • Chun Mison;Kang Seunghee;Kim Byoung-Suck;Oh Young-Taek
    • Radiation Oncology Journal
    • /
    • v.17 no.1
    • /
    • pp.43-51
    • /
    • 1999
  • Purpose : To discuss the technical aspect of interstitial brachytherapy including method of implant, insertion time of radioactive source, total radiation dose, and complication, we reviewed patients who had diagnoses of soft tissue sarcoma and were treated by conservative surgery, interstitial implant and external beam radiation therapy Materials and Methods : Between May 1995 and Dec. 1997, ten patients with primary or recurrent soft tissue sarcoma underwent surgical resection (wide margin excision) and received radiotherapy including interstitial brachytherapy. Catheters were placed with regular intervals of 1 ~l.5 cm immediately after tumor removal and covering the critical structures, such as neurovascular bundle or bone, with gelform, muscle, or tissue expander in the cases where the tumors were close to those structures. Brachytherapy consisted of high dose rate, iridium-192 implant which delivered 12~15 Gy to 1 cm distance from the center of source axis with 2~2.5 Gy/fraction, twice a day, starting on 6th day after the surgery, Within one month after the surgery, total dose of 50~55 Gy was delivered to the tumor bed with wide margin by the external beam radiotherapy. Results : All patients completed planned interstitial brachytherapy without acute side effects directly related with catheter implantation such as infection or bleeding. With median follow up duration of 25 months (range 12~41 months), no local recurrences were observed. And there was no severe form of chronic complication (RTOGIEORTC grade 3 or 4). Conclusion : The high dose rate interstitial brachytherapy is easy and safe way to minimize the radiation dose delivered to the adjacent normal tissue and to decrease radiation induced chronic morbidity such as fibrosis by reducing the total dose of external radiotherapy in the management of soft tissue sarcoma with conservative surgery.

  • PDF

Analysis of Flood Control Effect by Applying the Connecting Channel in Estuary Area Including the Confluence of Two Rivers (2개의 하천이 합류하는 하구역에서의 연결수로 통수능에 따른 홍수위저감효과 분석)

  • Kim, Sooyoung;Kim, Hyung-Jun;Yoon, Kwang Seok
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.1065-1075
    • /
    • 2015
  • In the estuary where the structure such as river-mouth weir has been installed, the flow is developed very complicatedly due to river water from upstream, tide of the sea and floodgate operation. Especially, if basin outlets more than one exists in one estuary, the boundary conditions will be significantly more complex form. Saemangeum(SMG) project area in Korea is the most typical example. There are Mankyung river and Dongjin river in upstream. The water of them inflows into SMG project area. In the downstream, river flow was drained from inland to sea over the SMG sea dike through the sluice. The connecting channel was located between Mankyung and Dongjin basins. It functions not only as transportation by ship in ordinary period but also as flood sharing by sending flood flow to each other in flood period. Therefore, in order to secure the safety against flood, it is very important to understand the flood sharing capacity for connecting channel. In this study, the flood control effect was analyzed using numerical simulation. Delft3D was used to numerical simulation and simulated period was set up with neap tide, in which the maximum flood stage occurred due to poor drainage. Actually, three connecting channels were designed in land use plan of the SMG Master Plan, but they were simplified to a single channel for conciseness of analysis in this study. According to the results of numerical analysis, the water level difference between two basins was increased and the maximum flood stage at dike sluice was also upraised depending on decrease of conveyance. And the velocity induced by same water level difference was decreased when the conveyance became smaller. In certain conveyance above, there was almost no flood control effect. Therefore, if the results of this study are considered for design of connecting channel, it will be expected to draw the optimal conveyance for minimizing dredging construction cost while maximizing the flood control effect.