• Title/Summary/Keyword: 안전계장기능

Search Result 5, Processing Time 0.027 seconds

A Study on the Improvement of Safety Instrumented Function of Hydrogen Refueling Station Considering Individual Risk (개인적 위험도를 고려한 수소충전소의 안전계장기능 향상에 관한 연구)

  • YOON SUP BYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.3
    • /
    • pp.297-306
    • /
    • 2023
  • The frequency of fatal accidents that can occur at hydrogen refueling station was compared with the risk criterion for the general public suggested by the health and safety executive. If hydrogen refueling station meets the accident prevention facility standards presented in KGS Code FP216/217, it was confirmed that the risk of hydrogen refueling station was not at an unacceptable (intolerable) risk level. However, the risk of hydrogen refueling station due to small leak was analyzed as low as reasonably practicable. Therefore, methods for improving the safety instrumented function of hydrogen refueling station were reviewed. It was confirmed that the risk of hydrogen refueling station can be affected by the number of installed safety instrumentation system components, redundant architecture, mission time, proof test interval, etc. And methods for maintaining the risk of hydrogen refueling station at an acceptable risk level have been proposed.

SIS Design for Fuel Gas Supply System of Dual Fuel Engine based on Safety Integrity Level(SIL) (이중연료엔진의 연료가스공급시스템에 대한 안전무결도 기반 안전계장시스템 설계)

  • Kang, Nak-Won;Park, Jae-Hong;Choung, Choung-Ho;Na, Seong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.6
    • /
    • pp.447-460
    • /
    • 2012
  • In this study, the shutdown system of the fuel gas supply system is designed based on the Safety Integrity Level of IEC 61508 and IEC 61511. First of all, the individual risk($10^{-4}$/year) and the risk matrix which are the risk acceptance criteria are set up for the qualitative risk assessment such as the HAZOP study. The natural gas leakage at the gas supply pipe is identified as the highest risk among the hazards identified through the HAZOP study and as a safety instrumented function the shutdown function for leakage was defined. SIL 2 and PFD($2.5{\cdot}10^{-3}$) for the shutdown function are determined by the layer of protection analysis(LOPA). The shutdown system(SIS) carrying out the shutdown function(SIF) is verified and designed according to qualitative and quantitative requirements of IEC 61508 and IEC 61511. As a result of SIL verification and SIS conceptual design, the shutdown system is composed of two gas detectors voted 1oo2, one programmable logic solver, and two shutdown valve voted 1oo2.

Fire Safety Assessment Based on FSA and Risk Reduction of Machinery System Considering Functional Safety (기능적 안전을 고려한 FSA기반 기관 구역 화재 안전성 평가 및 개선)

  • Suh, Sung-Won;Yang, Young-Soon;Chung, So-Yeon;Ryu, Won-Sun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.3
    • /
    • pp.239-246
    • /
    • 2012
  • It is the well-known fact that most part of goods transported are moved on the unfavorable ocean and even a small amount of accident on sea is extremely dangerous for human lives, financial losses, and social responsibility. Among the several causes of accidents, those by fire have occurred frequently and their damage has been highly serious. The aim of this paper is to assess the risk of fires due to oil leakage in the machinery space. To define the possible fire scenario, our team has performed the search of casualty database and reviewed the previous and various studies in the field. As a result, it is noted that the quantitative risk of the fire scenario have been evaluated on the ground of the FSA risk model. The expected frequency of a fire amounts to incidents during the life of a ship, and the expected financial damage amounts to 5,654 USD per a ship. By adopting Safety Instrumented System (SIS) introduced in IEC 61508 and IEC 61511, SIS model is designed to prevent oil leakage fire as a risk reduction method. It is concluded that System Integrity Level (SIL) 1 seems to be appropriate level of SIS.

A Study on the Improvement of Reliability of Safety Instrumented Function of Hydrodesulfurization Reactor Heater (수소화 탈황 반응기 히터의 안전계장기능 신뢰도 향상에 관한 연구)

  • Kwak, Heung Sik;Park, Dal Jae
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.4
    • /
    • pp.7-15
    • /
    • 2017
  • International standards such as IEC-61508 and IEC-61511 require Safety Integrity Levels (SILs) for Safety Instrumented Functions (SIFs) in process industries. SIL verification is one of the methods for process safety description. Results of the SIL verification in some cases indicated that several Safety Instrumented Functions (SIFs) do not satisfy the required SIL. This results in some problems in terms of cost and risks to the industries. This study has been performed to improve the reliability of a safety instrumented function (SIF) installed in hydrodesulfurization reactor heater using Partial Stroke Testing (PST). Emergency shutdown system was chosen as an SIF in this study. SIL verification has been performed for cases chosen through the layer of protection analysis method. The probability of failure on demands (PFDs) for SIFs in fault tree analysis was $4.82{\times}10^{-3}$. As a result, the SIFs were unsuitable for the needed RRF, although they were capable of satisfying their target SIL 2. So, different PST intervals from 1 to 4 years were applied to the SIFs. It was found that the PFD of SIFs was $2.13{\times}10^{-3}$ and the RRF was 469 at the PST interval of one year, and this satisfies the RRF requirements in this case. It was also found that shorter interval of PST caused higher reliability of the SIF.

A Study on the Improvement of Preventive Measures for Improving the Safety of Chemical Reactor (화학반응기의 안전성 향상을 위한 예방조치 개선에 관한 연구)

  • Byun, Yoon Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.32-38
    • /
    • 2020
  • Based on the cases of fire and explosion accident in the chemical reactor, thr problems of preventive measures installed in the chemical reactor were analyzed. The chemical reactors produce a variety of chemicals and install rupture disk to relieve the pressure that rises sharply in the event of a runaway reaction. In order to maintain the function of the rupture disk, the emissions was allowed to be discharged into the atmosphere, resulting in fire and explosion accidents. As a way to improve this, safety instrumented system based on the safety integrity level(SIL3) was applied as a preventive measures for chemical reactor. Two emergency shur-off valves are installed in series on pipe dropping raw materials for chemical reactor so that the supply of raw materials can be cut off even if only one of the two emergency shut-off valves is operated during the runaway reaction. The automatic on/off valve is installed in parallel in the supply pipe of the reaction inhibitor so that the reaction inhibitor can be injected even if only one valve is opened at the time of the runaway reaction.