• Title/Summary/Keyword: 안전계수(safety factor)

Search Result 357, Processing Time 0.021 seconds

A Feasibility Study on Weight Reduction of Shoe Sole Cleaner's Top Plate Based on FE Analysis (전산 구조 해석 기반 신발 바닥 청소기 상판의 경량화 가능성 검토 연구)

  • Kim, Seo-Hyeon;Yu, Seong-Jae;Moon Sang-Jun;Kim, San
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.110-116
    • /
    • 2022
  • As the spread of COVID-19 continues, cleanliness and quarantine are emphasized in daily life. If foreign substances enter through the shoe sole when using public facilities, cleanliness may deteriorate and various infections may occur. To prevent this, shoe sole cleaners that filter out foreign substances have been developed. In this study, a design that satisfies structural safety was presented by selecting a new material and updating the design parameter to reduce the weight of the shoe sole cleaner. To evaluate the structural safety, a finite element analysis under selected design loads was performed. Through design improvement and stress analysis, a model that was approximately 85% lighter than the existing model was developed.

Numerical Analysis for Integrity Evaluation of River Bank (하천제방의 건전도 평가를 위한 수치해석적 연구)

  • Jung, Hyuksang;Byun, Yoseph;Chun, Byungsik;Choi, Bonghyuck;Kim, Jinman
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.19-26
    • /
    • 2010
  • An influence factors for soundness evaluation of river levee include consisting embankment in case piping, permeability coefficient of ground, height of embankment, the width of crest, material characteristics of embankment and foundation ground, shape of embankment slope, an influence for penetration of rainfall or river water in case slope stability. In this study, it was operated a feasibility investigation of existing design result, stability evaluation for permeability coefficient use and permeability coefficient change of foundation ground to investigate an influence in line with permeability coefficient change for result of river levee penetration analysis. The evaluation results of influence factors, the permeability coefficient was used in design and it was evaluated influence in safety factor of piping. After the evaluation of influence factors, the permeability coefficient used in the design appears with the fact that differs in a design report about same soil.

A Study on the Evaluation of Field Installation Damage and Strength Reduction Factor of Geogrid for Reinforced Retaining Wall (보강토 옹벽용 지오그리드의 현장 내시공성 및 강도 감소계수 평가에 관한 연구)

  • Park, Juhwan;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.7
    • /
    • pp.5-12
    • /
    • 2012
  • Recently the installation of reinforced earth retaining walls in the domestic construction site has increased, surpassing conventional RC walls. These reinforced walls have various types depending on the reinforcing material, installation method and the form of face panel. However, there are difficulties in design and construction management due to the unproved safety of construction method. In case of reinforcing materials, despite the fact that they come in all different sizes and types produced by small businesses or partially imported with cheap price and low quality, no proper standards for designing the walls have been suggested. In order to apply reinforced retaining wall system to broad cases and design the walls effectively considering site conditions, specific design and construction guidelines for efficient construction management are needed. In conclusion, this study verified that reduction factors can be greatly affected by grain sizes and stiffness of backfill materials and granularity range, therefore in case of relatively large construction site, it is required to redesign the reinforced retaining wall by evaluating site installation resistance test, applying respective reduction factors to each backfill material and select the right geogrid depending on the usage of retaining wall so as to enhance the safety of reinforced earth retaining walls with efficiency.

Numerical Simulation of PFOA in Tokyo Bay using EMT-3D (EMT-3D 모델을 이용한 동경만의 PFOA 시뮬레이션)

  • Kim, Dong-Myung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.3
    • /
    • pp.173-181
    • /
    • 2007
  • A three-dimensional ecological model (EMT-3D) was applied to Tokyo Bay for the simulation of PFOA. EMT-3D was calibrated with seawater analysis data obtained from the study area in 2004. The simulated results of dissolved PFOA were in good agreement with the observed values, with a correlation coefficient(R) of 0.7115${\sim}$0.8759 and a coefficient of determination $(R^2)$ of 0.5062${\sim}$0.7672. The results of sensitivity analysis showed that partition rate, adsorption rate and settling rate were important factors for PFOA in particulate organic matter. In the case of PFOA in phytoplankton, bioconcentration factor, uptake rate and partition rate were important factors. Therefore, the parameters must be carefully considered in the modeling. In the case of 50% and 80% total loads reduction, concentration of dissolved PFOA was shown to be lower than 20ng/L and 10ng/L, respectively. In the case of reduction of loads from rivers in each prefecture, Tokyo prefecture was found to have the most influence on the change of dissolved PFOA in surface water while Chiba prefecture was found to have the most influnce on the change of dissolved PFOA in bottom water.

  • PDF

A Study on the Calculation of Load Resistance Factor of over Tension Anchors by Optimization Design (최적화 설계를 통한 과긴장 앵커의 하중-저항계수 산정 연구)

  • Soung-Kyu Lee;Yeong-Jin Lee;Yong-Jae Song;Tae-Jun Cho;Kang-Il Lee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.17-26
    • /
    • 2023
  • To consider the risk of damage and fracture of P.C strands, the existing post-maintenance system alone has the limitations, hence it is necessary to quantitatively evaluate and predict the deterioration, durability and safety of facilities and establish a reasonable maintenance system considering the asset value of facilities. Therefore, it is worth considering a preventive maintenance plan that allows proactive measures to be taken before a major defect occurs in the temporary anchor. This study devised a preventive over tension method, reviewed its effectiveness through design and field tests, by calculating the resistance factors by performing a reliability-based optimization design. At this time, the over tension anchor method was evaluated using the ratio of the residual tension force after the fracture of P.C strands to the effective tension force before the fracture of P.C strand, followed by the resistance factor calculated by the optimal solution for each random variables using Excel solver and applying it to the limit state equations. As a result of the study, if the over tension ratio is 125% to 130%, the remaining strands showed a high resistance effect even after the fracture of P.C strand. As a result of the optimization design, it was found that it is appropriate to apply the load factor (γ) of 1.25, and the resistance factors of Φ1, Φ2, Φ3 as 0.7, 0.5, 0.6.

Determination of Bioconcentration Factor in Some Pesticides (일부 농약의 생물농축계수의 측정)

  • 민경진;차춘근
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.2
    • /
    • pp.146-152
    • /
    • 1999
  • The present study was performed to investigate the bioconcentration of BPMC, chlorothalonil, dichlorvos and methidathion. The BCFs(bioconcentration factors) and depuration rate constants for four pesticides in zebrafish(brachydanio rerio) were measured under semi-static conditions(OECD guideline 305-B) in a concentration of one-hundredth of the 96 hours LC50 of each pesticide at the equilibrium condition. The results obtained are summarized as follows : The BCFs of BPMC, chlorothalonil, dichlorvos and methidathion were 1.44$\pm$0.09, 2.223$\pm$0.063, 0.81$\pm$0.08 and 5.53$\pm$0.13, respectively. Depuration rate constants of BPMC, chlorothalonil, dichlorvos and methidathion were 0.028, 0.015, 0.220 and 0.152, respectively. The concentrations of BPMC, dichlorovs and methidathion in zebrafish reached an equilibrium in 3 days, and the equilibrium of chlorothalonil was reached after 14 days. Depuration rate of dichlorvos was the fastest followed by methidathion, BPMC and chlorothalonil. The lower BCF of BPMC was due to its relatively high KOW, slow KDEP, and low SW and VP, compared to chlorothalonil and methidathion. The BCF of chlorothalonil was much lower than that excepted on the basis of high KOW, slow KDEP, SW and VP. The reason is that the experimental concentration for chlorothalonil is 1/100~1/1000 lower than that of BPMC, dichlorvos and methidathion. The BCF of dichlorvos was lower than that of other pesticides due to its very rapid KDEP, very high VP and SW, and very low KOW. The BCF of methidathion was higher than that of other pesticides due to its very low VP and SW. Therefore, these data suggest that physicochemical properties of pesticides may be important in the bioconcentration.

  • PDF

Analysis of an Actual Slope Failure in the Residual Soil by Suction Stress Based Effective Stress (흡수응력에 기반한 유효응력에 의한 실제 잔류토 사면 붕괴의 해석)

  • Oh, Seboong;Lu, Ning;Park, Young Mog;Lee, Junsuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3C
    • /
    • pp.113-120
    • /
    • 2012
  • An actual slope failure was analyzed in residual soils at Jinju. Due to rainfall infiltration, the safety factor decreases in the unsaturated layers, since the effective stress and shear strength decrease. In this study, the effective stress is based on suction stress using soil water retention curve. Unsaturated properties were evaluated on soil water retention curve, hydraulic conductivity and shear strength with samples from the site. After infiltration analysis of unsaturated flow under the actual rainfall, the distribution of pore water pressure could be calculated in the slope layers. In the stress field of finite elements, an elastic analysis calculated total stress distribution in the layers and also shear stresses on the slip surface using elastic model. On the slip surface, suction stress and effective stress evaluated the shear strength. As a result, the factor of safety was calculated due to rainfall, which could simulate the actual slope failure. In particular, it was found that the suction stress increases and both the effective stress and the shear strength decrease simultaneously on the slip surface.

Saxitoxin and Its Analogues: Toxicity, Analytical Method, Occurrence and Safety Management (삭시톡신과 그 유사체: 독성, 분석법, 국내외 오염도 및 관리 동향)

  • Lee, Sang Yoo;Im, Ju Hee;Woo, So Young;Choi, Hwa Young;Park, Su Been;Yoo, Cha Nee;Chun, Hyang Sook
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.6
    • /
    • pp.521-534
    • /
    • 2020
  • Paralytic shellfish poisoning (PSP) occurs when saxitoxin (STX), which is produced by harmful algae (dinoflagellates) and then accumulated in bivalve shellfish by filter-feeding, is consumed by humans. With recent advances in analysis technology, it has been reported that dinoflagellates also produce a variety of analogues such as the gonyautoxin (GTX) group and the N-sulfo-carbamoyl toxin (C toxin) group, in addition to STX. Accordingly, CODEX and the EFSA are stepping forward to manage STX and analogues as STX groups requiring safety management. In Korea, the occurrence of dinoflagellates producing STX analogues has already been reported, and contamination of analogues (GTX group, C toxin group) in live mussels has also been reported. In this study, in order to provide the basis for systematic monitoring and safety management of STX and analogues, their physicochemical characteristics, occurrence of dinoflagellates, toxicity and toxic equivalency factor, analytical method and occurrence were widely reviewed. This review is expected to contribute to strengthening the safety management of STX and its analogues.

Characteristics of Lateral Flow due to Embankments for Road Construction on Soft Grounds Using Vertical Drain Methods (연직배수공법이 적용된 연약지반 상에 도로성토로 인한 측방유동의 특성)

  • Hong, Won-Pyo;Kim, Jung-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.9
    • /
    • pp.5-15
    • /
    • 2012
  • Field monitoring data for embankments in thirteen road construction sites at coastal area of the Korean Peninsula were analyzed to investigate the characteristics of lateral flow in soft grounds, to which vertical drain methods were applied. First of all, the effect of the embankment scale on the lateral flow was investigated. Thicker soft soils and lager relative embankment scale produced more horizontal displacements in soft grounds. Especially, if thick soft grounds were placed, the relative embankment scale, which was given by the ratio of thickness of soft ground to the bottom width of embankments, became larger and in turn large horizontal displacement was produced. And also higher filling velocity of embankments induced more horizontal displacements in soft grounds. The other major factors affecting the lateral flow in soft ground were the thickness and undrained shear strength of soft grounds, the soil modulus and the stability number. Maximum horizontal displacement was induced by less undrained shear strength and soil modulus of soft grounds. Also more stability numbers produced more maximum horizontal displacements. When the shear deformation does not develop, the stability number was less than 3.0 and the safety factor of bearing was more than 1.7. However, if the stability number was more than 5.14 and the safety factor of bearing was less than 1.0, the unstable shear failure developed in soft ground. 50mm can be recommended as a criterion of the allowable maximum horizontal displacement to prevent the shear deformation in soft ground, while 100mm can be recommended as a criterion of the allowable maximum horizontal displacement to prevent the shear failure in soft ground.

Mechanical Stability Analysis to Determine the Optimum Aspect Ratio of Rock Caverns for Thermal Energy Storage (열에너지 저장용 암반 공동의 최적 종횡비 결정을 위한 역학적 안정성 해석)

  • Park, Dohyun;Ryu, Dongwoo;Choi, Byung-Hee;Sunwoo, Choon;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.23 no.2
    • /
    • pp.150-159
    • /
    • 2013
  • It is generally well known that the stratification of thermal energy in heat stores can be improved by increasing the aspect ratio (the height-to-width ratio) of the stores. Accordingly, it will be desirable to apply a high aspect ratio so as to demonstrate the good thermal performance of heat stores. However, as the aspect ratio of a store increases, the height of the store become larger compared to its width, which may be unfavorable for the structural stability of the store. Therefore, to determine an optimum aspect ratio of heat stores, a quantitative mechanical stability assessment should be performed in addition to thermal performance evaluations. In the present study, we numerically investigated the mechanical stability of silo-shaped rock caverns for underground thermal energy storage at different aspect ratios. The applied aspect ratios ranged from 1 to 6 and the mechanical stability was examined based on factor of safety using a shear strength reduction method. The results from the present study showed that the factor of safety of rock caverns tended to decrease with the increase in aspect ratio and the stress ratio of the surrounding rock mass was influential to the stability of the caverns. In addition, the numerical results demonstrated that under the same conditions of rock mass properties and aspect ratio, mechanical stability could be improved by the reduction in cavern size (storage volume), which indicates that one can design high-aspect-ratio rock caverns by dividing a single large cavern into multiple small caverns.