Journal of the Institute of Electronics and Information Engineers
/
v.51
no.1
/
pp.145-151
/
2014
This paper proposes an image haze removal algorithm for a single image. The conventional Dark Channel Prior(DCP) algorithm estimates a transmission map using the dark information in an image, and the haze regions are then detected using a matting algorithm. However, since the DCP algorithm uses block-based processing, block artifacts are invariably formed in the transmission map. To solve this problem, the proposed algorithm generates a modified transmission map using a Hidden Markov Random Field(HMRF) and Expectation-Maximization(EM) algorithm. Experimental results confirm that the proposed algorithm is superior to conventional algorithms in image haze removal.
With the development of autonomous driving technology, the importance of object recognition technology is increasing. Haze removal is required because the hazy weather reduces visibility and detectability in object recognition. However, the image from which the haze has been removed cannot properly reflect the unique color, and a detection error occurs. In this paper, we use CIE1931 color coordinate system to extend or reduce the color area to provide algorithms and hardware that reflect the colors of the real world. In addition, we will implement hardware capable of real-time processing in a 4K environment as the image media develops. This hardware was written in Verilog and implemented on the SoC verification board.
In order to predict the deterioration of stone monument due to acid fog, an artificial fog test using pH4.0 and pH5.6 was applied to the Gyeongju Namsan granite, decite and marble. After the test had weathered Gyeongju Namsan granite a larger weight reduction due to acid fog than fresh one. Decite has shown the most significant changes among the tested rocks with about 0.005 % of weight reduction. Decite and weathered granite will have considerable weight reduction due to acid rain than the acid fog, whereas the marble was expected to show a weight reduction regardless of the phase of water. The porosity and water absorption rate of weathered granite had significantly increased. This result means that the weathered rock is predicted to be more susceptible to acid fog than the fresh rock. The absorption rate of the marble after the test had shown approximately 50 % increase. The color of the samples had slightly changed towards yellow, such tendency was greater shown in weathered rocks. The marble reacted with acid fog had an increased whiteness. A large amount of cation in the samples is caused mainly by the dissociation of minerals through the reaction with acid fog.
Kim, Bong-Keun;Chang, In-Soo;Park, Ki-Bum;Cho, Jung-Sik;Lee, Myung-Jin
Proceedings of the KAIS Fall Conference
/
2009.05a
/
pp.709-712
/
2009
대부분의 고속도로 안개경고시스템은 시정측정을 위해 고가의 광학센서를 사용하고 있으나 운전자의 시정감각과 유사하면서도 비교적 저가인 CCTV를 이용한 시정측정에 관한 연구가 활발히 이루어지고 있다. 그러나 대부분의 CCTV를 이용한 시정측정 방법은 ROI를 기반으로 하고 있어 설치가 까다롭고 기존 CCTV를 활용하기 어렵다는 문제점을 가지고 있다. 본 논문에서는 고속도로상의 안개경고는 약 1~2Km이내의 시정일 때 발생되며, 눈으로 물체를 식별할 수 있는 최대거리가 시정이라는 기초적인 개념에 근거하여 고속도로 안개경고시스템에 사용될 수 있는 Non-ROI 기반의 실시간 CCTV 시정측정 방법을 제안한다. 이를 위해 본 논문에서는 고속도로상에 주행중인 차량의 실시간 이동영역과 가시선을 검출하고 카메라와 도로간의 상관관계를 나타내는 도로모델을 이용하여 시정측정을 수행하는 방법을 제시한다. 제안된 방법은 1~2Km 이내의 시정측정을 위한 방법으로 ROI가 필요없고 직관적이고 현실적인 주야간 시정측정이 가능하며 기존의 고속도로 CCTV에 바로 적용할 수 있다는 장점이 있다.
Journal of the Institute of Electronics and Information Engineers
/
v.54
no.1
/
pp.96-110
/
2017
Most of vehicle detection studies using the existing general lens or wide-angle lens have a blind spot in the rear detection situation, the image is vulnerable to noise and a variety of external environments. In this paper, we propose a method that is detection in harsh external environment with noise, blind spots, etc. First, using a fish-eye lens will help minimize blind spots compared to the wide-angle lens. When angle of the lens is growing because nonlinear radial distortion also increase, calibration was used after initializing and optimizing the distortion constant in order to ensure accuracy. In addition, the original image was analyzed along with calibration to remove fog and calibrate brightness and thereby enable detection even when visibility is obstructed due to light and dark adaptations from foggy situations or sudden changes in illumination. Fog removal generally takes a considerably significant amount of time to calculate. Thus in order to reduce the calculation time, remove the fog used the major fog removal algorithm Dark Channel Prior. While Gamma Correction was used to calibrate brightness, a brightness and contrast evaluation was conducted on the image in order to determine the Gamma Value needed for correction. The evaluation used only a part instead of the entirety of the image in order to reduce the time allotted to calculation. When the brightness and contrast values were calculated, those values were used to decided Gamma value and to correct the entire image. The brightness correction and fog removal were processed in parallel, and the images were registered as a single image to minimize the calculation time needed for all the processes. Then the feature extraction method HOG was used to detect the vehicle in the corrected image. As a result, it took 0.064 seconds per frame to detect the vehicle using image correction as proposed herein, which showed a 7.5% improvement in detection rate compared to the existing vehicle detection method.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2013.06a
/
pp.331-334
/
2013
본 논문에서는 차량에 부착된 4대의 어안렌즈 카메라 영상을 이용하여 차량 주위 전방향의 주변 정보를 포함하는 정합 영상을 생성하고, 생성된 정합 영상에서 차선을 검출하는 알고리즘을 제안한다. 기존의 전방 카메라만을 이용하여 차선을 검출하는 방법들은 안개와 같이 기상 환경이 안 좋은 경우 가시거리가 짧아져 정상적인 차선 검출이 어려운 문제가 있다. 이에 반해 4대의 어안렌즈 카메라로 차량의 주변을 촬영한 영상은 기상 환경에 영향을 적게 받아 안정적인 차선 검출에 용이하다. 어안렌즈 카메라로 촬영한 영상은 왜곡이 심하기 때문에 왜곡 보정을 수행한 후 차량 위에서 아래로 내려다본 시점으로 투영 변환하여 하나의 영상으로 정합한다. 정합영상에서 관심영역을 설정한 후 차선 후보 영역을 검출하고, 검출된 후보 영역들로 차선을 직선으로 모델링한다. 점선 차선 구간이나 차량 흔들림에 대응하기 위해 직선으로 모델링된 차선 정보의 차선 각도와 차량으로부터 거리 정보를 칼만 필터 기반 추적 및 보정하여 안정적으로 차선 검출을 수행한다. 실험 결과 제안하는 방법은 실선구간에서 99.57%, 점선구간에서는 90.48%의 검출 정확도를 가진다.
The highway visibility reduction caused by fog is one of the major elements of traffic accidents. Though the fog warning systems can lead drivers into safe driving by letting them aware dangerous situations in advance, the optical sensors, such as fog sensor, has been extremely costly. Through recent studies, it is delivered that visibility measurements have become obtainable with relatively cheap cameras and their functionality is as similar as a driver' visual sense. Those measurements however require additional signs or ROI, so it is still costly and unable to utilize the conventional images from the existing systems. This study proposes a new method to detect the visibility in real time based on the conventional images from the existing CCTV cameras. The proposed method builds a road model and extracts and applies vehicle movements and visible lines - those highlight easy and quick visibility measurements. The proposed method has advantages of both (1) having possible day and night visibility measurements similar to drivers' visual sense and (2) being easily applied to the existing CCTV system without additional devices. This paper presents field experiments using images acquired from the Central Inland Expressway and discusses future research directions.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2012.05a
/
pp.837-839
/
2012
When the for occurred, the driver does not get the vision is has difficult on driving. In this case, the probability of occurrence of accidents are very high level. To reduce accidents, this system provide drivers with the safety of ensure to measures that a service inform current situation. in this paper, the crash occur in fog to prevent accident using vehicle safety system to give a alarm and control. The proposed system is installed on the outside of the vehicle, humidity, and ambient light sensors inside the car from the information collected by the system controller for the detection of fog conditions using video equipment and then finally the fog occurs if you do not get the driver's field of events is causing the system.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.11a
/
pp.91-94
/
2022
자율주행 자동차 개발 연구가 활발히 진행됨에 따라 객체 검출기의 성능이 중요하게 되었다. 딥러닝 기술의 발전하면서 객체 검출기의 성능도 큰 발전을 이루었다. 그에 따라 도로 위 차량 검출기의 성능도 발전하고 있으나 평상시 낮 도로상황에서 잘 동작하던 모델은 안개가 끼거나 밤 상황이 되면 제대로 동작하지 못하는 문제를 가지고 있다. 이유는 딥러닝 모델이 학습할 때 사용한 데이터셋의 정보에 따라 특정 도메인에 편향된 특성을 학습하기 때문이다. 따라서, 본 논문에서는 객체 검출 신경망에 도메인 판별기를 적용하여 이와 같은 도메인 이동 문제를 극복하는 모델을 제안한다. 모델의 성능을 Cityscapes 데이터셋과 Foggy Cityscapes 데이터셋을 사용하여 평가한 결과, 기존의 특정 도메인에서 학습한 모델보다 제안하는 모델의 검출 성능이 개선된다는 것을 확인하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2015.07a
/
pp.489-490
/
2015
객체의 인식을 위한 컴퓨터 비전 알고리즘은 안개와 비와 같은 기상이 좋지 않은 상황에서는 인식 성능이 떨어지고 있다. 이로 인하여 최근 악천후 환경에서 촬영된 영상으로부터 날씨 현상을 제거하는 기법들이 연구되고 있다. 빗줄기는 시공간적 무작위성으로 인하여 검출 및 제거가 어려운 현상이다. 또한 기존의 빗줄기 검출 및 제거 기법들은 대부분 고정된 카메라로부터 촬영된 영상을 대상으로 처리함으로써 자동차와 같은 움직임이 있는 촬영환경에서는 부적합하다. 최근에는 카메라나 객체의 움직임에 대응할 수 있는 빗줄기 검출 및 제거 알고리즘이 개발되고 있으나, 방대한 연산량이 필요하기 때문에 실시간이 불가능하다. 본 논문에서는 최근 연구되고 있는 카메라 움직임이 있는 환경에서 빗줄기 검출 및 제거 알고리즘을 DSP 환경에서 구현하고 내부 메모리 최적화와 EMDA 이용, 소프트웨어 파이프라인 등을 통해 최적화를 수행하여 실시간성을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.