• Title/Summary/Keyword: 안개 가시성

Search Result 29, Processing Time 0.044 seconds

No-Reference Visibility Prediction Model of Foggy Images Using Perceptual Fog-Aware Statistical Features (시지각적 통계 특성을 활용한 안개 영상의 가시성 예측 모델)

  • Choi, Lark Kwon;You, Jaehee;Bovik, Alan C.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.131-143
    • /
    • 2014
  • We propose a no-reference perceptual fog density and visibility prediction model in a single foggy scene based on natural scene statistics (NSS) and perceptual "fog aware" statistical features. Unlike previous studies, the proposed model predicts fog density without multiple foggy images, without salient objects in a scene including lane markings or traffic signs, without supplementary geographical information using an onboard camera, and without training on human-rated judgments. The proposed fog density and visibility predictor makes use of only measurable deviations from statistical regularities observed in natural foggy and fog-free images. Perceptual "fog aware" statistical features are derived from a corpus of natural foggy and fog-free images by using a spatial NSS model and observed fog characteristics including low contrast, faint color, and shifted luminance. The proposed model not only predicts perceptual fog density for the entire image but also provides local fog density for each patch size. To evaluate the performance of the proposed model against human judgments regarding fog visibility, we executed a human subjective study using a variety of 100 foggy images. Results show that the predicted fog density of the model correlates well with human judgments. The proposed model is a new fog density assessment work based on human visual perceptions. We hope that the proposed model will provide fertile ground for future research not only to enhance the visibility of foggy scenes but also to accurately evaluate the performance of defog algorithms.

Estimation of the Medium Transmission Using Graph-based Image Segmentation and Visibility Restoration (그래프 기반 영역 분할 방법을 이용한 매체 전달량 계산과 가시성 복원)

  • Kim, Sang-Kyoon;Park, Jong-Hyun;Park, Soon-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.163-170
    • /
    • 2013
  • In general, images of outdoor scenes often contain degradation due to dust, water drop, haze, fog, smoke and so on, as a result they cause the contrast reduction and color fading. Haze removal is not easier problem due to the inherent ambiguity between the haze and the underlying scene. So, we propose a novel method to solve single scene dehazing problem using the region segmentation based on graph algorithm that has used a gradient value as a cost function. We segment the scene into different regions according to depth-related information and then estimate the global atmospheric light. The medium transmission can be directly estimated by the threshold function of graph-based segmentation algorithm. After estimating the medium transmission, we can restore the haze-free scene. We evaluated the degree of the visibility restoration between the proposed method and the existing methods by calculating the gradient of the edge between the restored scene and the original scene. Results on a variety of outdoor haze scene demonstrated the powerful haze removal and enhanced image quality of the proposed method.

Visibility Enhancement in Fog Situation using User Controllable Dehazing Method (사용자 제어가 가능한 안개제거 방법을 이용한 안개상황에서의 가시성 향상)

  • Lee, Jae-won;Hong, Sung-hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.814-817
    • /
    • 2013
  • In this paper, we propose a visibility enhancement method using dehazing method in fog situation. The proposed method calculate low bound of the transmission rate that indicate fog rate and transmission that processed power operation in each pixel by the user's control. And we obtain the dehazed image using calculated transmission rate. Proposed method is possible real-time processing, because the method don't cause halo effect and drop operations from filtering by closed form. We can obtain the dehazed image in various fog conditions by user control that strength of removing fog can be adjusted according to the dgree of fog.

  • PDF

색상 분석, 보정을 이용한 안개 제거 알고리즘

  • Eom, Tae-Ha;Lee, Geun-Min;Kim, Won-Ha
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.11a
    • /
    • pp.19-22
    • /
    • 2012
  • 본 논문에서는 영상의 Intensity와 색상의 채도 분석을 통한 안개 강도 측정과 제거, 그리고 색상을 보정하는 방법을 제안한다. 이를 위해 영상에서 안개가 많은 지역과 적은 지역을 히스토그램을 통해 분석하고 안개 강도 맵을 만들어 안개의 양에 따라 안개를 제거한다. 안개로 인하여 악화된 영상의 색상은 HSI 공간에서 분석하여, 안개 강도에 따른 보정을 한다. 색상뿐만 아니라 전달량에 따른 Intensity를 보정하여 영상의 전체적인 밝기와 Contrast를 향상시킨다. 제안하는 기법은 기존의 기법들과 비교하여 색상의 편향성을 보정하여 가시성뿐만 아니라 영상 내에 색상이 자연스럽게 조화된 결과를 얻었다.

  • PDF

색상 보정을 이용한 안개 제거 알고리즘

  • Eom, Tae-Ha;Lee, Geun-Min;Kim, Won-Ha
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.19-22
    • /
    • 2012
  • 본 논문에서는 히스토그램 분석을 통한 안개 강도 측정과 제거, 그리고 HSI채널에서 색상을 보정하는 방법을 제안한다. 이를 위해 영상에서 안개가 많은 지역과 적은 지역을 히스토그램을 통해 분석하고 안개 강도 맵을 만들어 안개의 양에 따라 안개를 제거한다. 안개로 인하여 악화된 영상의 색상은 HSI 공간에서 분석하여, 안개 강도에 따른 보정을 한다. 제안하는 기법은 기존의 기법들과 비교하여 색상의 편향성을 보정하여 가시성뿐만 아니라 영상 내에 색상이 자연스럽게 조화된 결과를 얻었다.

  • PDF

Real-time Dehazing Algorithm using Haze Modeling Expression (안개 모델링 식을 이용한 실시간 안개제거 알고리즘)

  • Lee, Jae-Won;Hong, Sung-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.350-352
    • /
    • 2013
  • 야외에서 촬영된 영상은 안개나 연무 등에 의한 화질 저하가 나타난다. 이를 해결하기 위하여 안개제거를 위한 여러 장의 영상, 추가정보를 이용하는 안개제거 방법과 한 장의 영상을 이용한 안개제거 방법들이 제안되어왔다. 본 논문에서는 한 장의 영상에서 안개나 연기를 제거하여 가시성이 향상된 영상을 제공하는 방법을 제안한다. 이를 위하여 본 논문에서는 안개영상 모델에 대한 2차원 방정식 풀이를 통해 원 영상에 안개가 어느 정도의 비율로 섞여있는지를 나타내는 전달률(transmission rate)을 계산하고, 계산된 전달률을 이용하여 안개가 제거된 영상을 구한다. 제안된 방식은 기존 방법들과 달리 필터를 사용하지 않고 화소단위의 연산만을 사용하므로 후광효과가 발생하지 않고, 연산량이 매우 적어 실시간 처리가 가능하다.

An Analysis of Change in Traffic Characteristics with Fog (안개 발생에 따른 교통 특성 변화 분석)

  • Kim, Soullam;Lim, Sung Han
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.4
    • /
    • pp.92-106
    • /
    • 2017
  • The adverse weather is known as a factor that interrupts traffic flow and causes traffic accidents and traffic congestion by lowering visibility of drivers. Especially, in case of fog unlike any other weather conditions, traffic accidents lead to serious accidents and the fatality of the accidents is known to be high. This paper aims to analyze uninterrupted traffic flow characteristics under foggy conditions among adverse weathers. The traffic volumes and speeds under foggy and normal conditions were analyzed. Results indicated that fog with low visibility causes the most insignificant reduction in traffic volumes. On the other hand, the reduction in the speeds due to low visibility was evident. In addition, the relationship between flow, speed, and density in fog were analyzed. Analysis results showed that the fog with less than 200m visibility had clear impact on traffic flow.

Visibility Enhancement of Underwater Image Using a Color Transform Model (색상 변환 모델을 이용한 수중 영상의 가시성 개선)

  • Jang, Ik-Hee;Park, Jeong-Seon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.5
    • /
    • pp.645-652
    • /
    • 2015
  • In underwater, such as fish farm and sea, turbidity is increased by water droplets and various suspended, therefore light attenuation occurs depending on the depth also caused by the scattering effect of light float. In this paper, in order to improve the visibility of underwater images obtained from these aquatic environment, we propose a visibility enhancement method using a haze removal method based on dark channel prior and a trained color transform model. In order to train a color transform model, we used underwater pattern images captured from Pohang and Yeosu, and to measure the performance of the proposed method, we carried out experiment of visibility enhancement using underwater images collected from Yeosu, Geomundo and Philippines. The results show that the proposed method can improve the visibility of underwater images of various locations.

Effective machine learning-based haze removal technique using haze-related features (안개관련 특징을 이용한 효과적인 머신러닝 기반 안개제거 기법)

  • Lee, Ju-Hee;Kang, Bong-Soon
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.83-87
    • /
    • 2021
  • In harsh environments such as fog or fine dust, the cameras' detection ability for object recognition may significantly decrease. In order to accurately obtain important information even in bad weather, fog removal algorithms are necessarily required. Research has been conducted in various ways, such as computer vision/data-based fog removal technology. In those techniques, estimating the amount of fog through the input image's depth information is an important procedure. In this paper, a linear model is presented under the assumption that the image dark channel dictionary, saturation ∗ value, and sharpness characteristics are linearly related to depth information. The proposed method of haze removal through a linear model shows the superiority of algorithm performance in quantitative numerical evaluation.

Nonlinear model for estimating depth map of haze removal (안개제거의 깊이 맵 추정을 위한 비선형 모델)

  • Lee, Seungmin;Ngo, Dat;Kang, Bongsoon
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.492-496
    • /
    • 2020
  • The visibility deteriorates in hazy weather and it is difficult to accurately recognize information captured by the camera. Research is being actively conducted to remove haze so that camera-based applications such as object localization/detection and lane recognition can operate normally even in hazy weather. In this paper, we propose a nonlinear model for depth map estimation through an extensive analysis that the difference between brightness and saturation in hazy image increases non-linearly with the depth of the image. The quantitative evaluation(MSE, SSIM, TMQI) shows that the proposed haze removal method based on the nonlinear model is superior to other state-of-the-art methods.