• Title/Summary/Keyword: 안개스크린

Search Result 2, Processing Time 0.027 seconds

Optimal Conditions of Aerosol Flow Generation for High-density and Uniform Fog Screen (고밀도 균일 안개스크린을 위한 에어로졸 유동의 최적 생성조건)

  • Shin, Dongsoo;Song, Wooseok;Kim, Jinwon;Kim, Woojin;Koo, Jaye
    • Journal of ILASS-Korea
    • /
    • v.22 no.1
    • /
    • pp.13-21
    • /
    • 2017
  • The fog screen is a device projecting the media to the aerosol flow field. As major parameters to generate dense and steady fog screen, shear stress, optical blockage ratio and SMD were obtained result through experiment. The micro droplet was generated by the piezo oscillation element, and the aerosol flow mixed with an air flow was sprayed into the vertical direction from the top of the fog screen through the 280 mm slot. For produce a dense, uniform fog screen, the shear effect, optical blockage ratio and SMD between aerosol and air curtain were measured. The minimum and maximum shear stress conditions were selected and it was confirmed that the optical transmission deviation of the aerosol flow field was small when the aerosol and air curtain flow rates were changed. When the aerosol and air curtain flow power were 18 V (1.51 m/s) and 24 V (2.55 m/s), respectively, under the condition of the minimum shear stress and laminar flow, the optical blockage ratios with the spray length were small, and it produced a most stable and high density uniform fog screen by injecting a constant of $10{\mu}m$ or less.

Extended Cartoon Rendering using 3D Texture (3차원 텍스처를 이용한 카툰 렌더링의 만화적 스타일 다양화)

  • Byun, Hae-Won;Jung, Hye-Moon
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.8
    • /
    • pp.123-133
    • /
    • 2011
  • In this paper, we propose a new method for toon shading using 3D texture which renders 3d objects in a cartoon style. The conventional toon shading using 1D texture displays shading tone by computing the relative position and orientation between a light vector and surface normal. The 1D texture alone has limits to express the various tone change according to any viewing condition. Therefore Barla et. al. replaces a 1D texture with a 2D texture whose the second dimension corresponds to the view-dependent effects such as level-of-abstraction, depthof-field. The proposed scheme extends 2D texture to 3D texture by adding one dimension with the geometric information of 3D objects such as curvature, saliency, and coordinates. This approach supports two kinds of extensions for cartoon style diversification. First, we support "shape exaggeration effect" to emphasize silhouette or highlight according to the geometric information of 3D objects. Second, we further incorporate "cartoon specific effect", which is examples of screen tone and out focusing frequently appeared in cartoons. We demonstrate the effectiveness of our approach through examples that include a number of 3d objects rendered in various cartoon style.