Researches on the prediction of domestic apartment sales price have been continuously conducted, but it is not easy to accurately predict apartment prices because various characteristics are compounded. Prior to predicting apartment sales price, the analysis of major factors, influencing on sale prices, is of paramount importance to improve the accuracy of sales price. Therefore, this study aims to analyze what are the factors that affect the apartment sales price in Gwangju, which is currently showing a steady increase rate. With 6 years of Gwangju apartment transaction price and various social factor data, several maching learning techniques such as multiple regression analysis, random forest, and deep artificial neural network algorithms are applied to identify major factors in each model. The performances of each model are compared with RMSE (Root Mean Squared Error), MAE (Mean Absolute Error) and R2 (coefficient of determination). The experiment shows that several factors such as 'contract year', 'applicable area', 'certificate of deposit', 'mortgage rate', 'leading index', 'producer price index', 'coincident composite index' are analyzed as main factors, affecting the sales price.
Proceedings of the Korean Society for Quality Management Conference
/
2006.04a
/
pp.506-512
/
2006
다양한 아파트 특성들을 이용하여 아파트 가격을 추정하고 예측하는 연구 또한 많이 존재하고 있는 실정이다. 그렇지만 이러한 연구들 대부분이 회귀모형에 지나치게 의존하고 있는 실정이다 그러나 회귀모형은 단점보다 장점이 많은 모형이다. 본 연구는 회귀모형을 부정하기보다는 새로운 모형을 도입하여, 회귀모형의 문제점들을 극복하고 회귀모형과 상호보완적인 모형을 도입할 필요성에 의해서 본 연구를 수행한 것이다. 다양한 아파트 특성들에 대하여 신경망모형을 이용하여 아파트 가격을 예측하고, 기존의 회귀모형과 비교하는 것이 본 연구의 주목적이다 또한 회귀모형과 신경망모형의 상호 보완적인 측면을 규명하는 것은 본 연구의 부차적인 목적이 된다 아파트 특성들은 주변에서 쉽게 이용 가능한 데이터를 위주로 하였다. 2004년 6월 기준으로 서울시 송파구와 도봉구의 아파트 매매가격들과 12개의 아파트 특성들을 수집하였다. 아파트 매매가격들 (즉, 매매 하한가, 일반 거래가, 매매 상한가) 을 새로운 측정방법을 이용하여 하나의 매매가격으로 추정하였으며, 대표성을 가지도록 하였다. 신경망모형을 도입하여 아파트 특성들을 이용하여 아파트 가격을 정밀하고 유효하게 예측하고, 기존의 회귀모형들과 비교하는 것은 아파트 가격에 대한 연구 분야에 큰 의미가 있다 하겠다. 그리고 주택에 관한 기존의 연구와 신규 연구에 신경망모형이 활용될 수 있으리라 판단된다.
Journal of the Korean Data and Information Science Society
/
v.28
no.6
/
pp.1471-1479
/
2017
The variability of trade price index of apartment influences on the various aspect, especially economics, social phenomenon, industry, and culture of the country. In this article, the autoregressive error (ARE) model has been considered for analyzing the monthly trading price index of apartment data. About 16 years of the monthly data have been used from September 2001 to May 2017. In the ARE model, six macroeconomic variables are used as the explanatory variables for the rade price index of apartment. The six explanatory variables are mortgage rate, oil import price index, consumer price index, KOSPI stock index, GDP, and GNI. The result has shown that trading price index of apartment explained about 76% by the mortgage rate, and KOSPI stock index.
This paper aims to analyze characteristic by the cities focused on the ratio of new apartment resale that is one of the apartment unit sale market, which has been increased recently. So, this study examined characteristics of population, apartment trade & sale, housing with 162 cities and counties and performed multiple regression analysis with dependent variable, ratio of new apartment resale. As a result. the factors affecting the ratio of new apartment resale are 7variables, apartment sales rate, transfer of ownership, apartment turnover rate, sale volume, regional apartment rate, population increasing rate, housing average apartment sale price rate. In terms of the increase in apartment sales prices, the rate of sales price increase was relatively low in areas where the transaction rate for apartment sales is high, and the number of apartment sales right transactions increased as the number of other ownership transfers rose. As a result, the data will be based on the improvement of the government's policies and systems to stimulate the transaction focused on the real estate agents in the apartment market.
Journal of the Korean Data and Information Science Society
/
v.26
no.6
/
pp.1239-1247
/
2015
In this study, 64 administrative regions with high frequencies of apartment trade in Seoul, Korea are classified by the apartment sale price. To consider distributions of apartment price for each region as well as the mean of the price, the symbolic histogram-valued data approach is employed. Symbolic data include all types of data which have internal variation in themselves such as intervals, lists, histograms, distributions, and models, etc. As a result of the cluster analysis using symbolic histogram data, it is found that Gangnam, Seocho, and Songpa districts and regions near by those districts have relatively higher prices and larger dispersions. This result makes sense because those regions have good accessibility to downtown and educational environment.
The Journal of the Convergence on Culture Technology
/
v.10
no.3
/
pp.111-119
/
2024
The purpose of study is to analyze the effect of population inflow on apartment price growth. For this purpose, proxy for population structure is employed: (i) net population inflow based on 'resident registration criteria', (ii) buyer's transaction. The major findings are as followed. First, net population inflow of total and 50 over gives no significant effects on the apartment price growth in Seoul and Jeju. However, there are significant and positive effects of 50s and 60s in Seoul, and 60s in Jeju on the apartment price growth, respectively. Second, buyer's transactions of 'total and 50 over' give positive effect on apartment price growth only in Seoul. However, 60s and 50s of buyers' transaction give positive effect on the apartment price growth both in Seoul and Jeju. This study implies that more detailed population inflow like age group provide more meaningful information to the study on apartment price growth.
Journal of the Korean Data and Information Science Society
/
v.26
no.3
/
pp.561-568
/
2015
In this study we predict apartment prices per unit in Daegu-Gyeongbuk areas by spatial lag and spatial error models, both of which belong to so-called spatial regression model. A spatial weight matrix is constructed by k-nearest neighbours method and then the models for the apartment prices in March, 2012 are fitted using the weight matrix. The apartment prices in March, 2013 are predicted by the fitted spatial regression models and then performances of two spatial regression models are compared by RMSE (root mean squared error), RRMSE (root relative mean squared error), MAE (mean absolute error).
Proceedings of the Safety Management and Science Conference
/
2008.11a
/
pp.441-455
/
2008
본 논문은 단기 및 장기간에 걸쳐 부동산시장의 동태적 자금흐름과 수익률 분석에 초점을 맞추고 있다. 본 논문에서는 부동산시장의 실증적 동태적 자금흐름과 수익률 분석은 VAR모형을 사용하였으며 다양한 금융 및 경제관련 변수들을 연구에 포함시키고 있다. 실증적 분석 결과에 따르면 우리나라에서도 기존의 미국 연구 사례에서와 같이 금융시장의 자금흐름을 통하여 부동산시장의 동태적 자금흐름을 예측할 수 없다는 점을 파악할 수 있다. 또한 Granger 인과성 검정 결과에 따르면 통화정책 및 증권시장 변수 모두 전국아파트 매매가격, 전국 단독주택 매매가격, 전국 전세아파트 매매가격 실질상승률 등의 부동산관련 변수에 통계적으로 유의한 영향이 크지 않음을 알 수 있다. 그러나 분산분해 결과에 따르면 전국아파트 및 전국전세아파트 매매가격 실질상승률에 대한 움직임에 코스피수익률의 영향력이 증대될 수 있음을 알 수 있다.
Lee, Jung-Mok;Choi, Su An;Yu, Su-Han;Kim, Seonghun;Kim, Tae-Jun;Yu, Jong-Pil
The Journal of Bigdata
/
v.6
no.1
/
pp.91-113
/
2021
Despite the influence of real estate in the Korean asset market, it is not easy to predict market trends, and among them, apartments are not easy to predict because they are both residential spaces and contain investment properties. Factors affecting apartment prices vary and regional characteristics should also be considered. This study was conducted to compare the factors and characteristics that affect apartment prices in Seoul as a whole, 3 Gangnam districts, Nowon, Dobong, Gangbuk, Geumcheon, Gwanak and Guro districts and to understand the possibility of price prediction based on this. The analysis used machine learning algorithms such as neural networks, CHAID, linear regression, and random forests. The most important factor affecting the average selling price of all apartments in Seoul was the government's policy element, and easing policies such as easing transaction regulations and easing financial regulations were highly influential. In the case of the three Gangnam districts, the policy influence was low, and in the case of Gangnam-gu District, housing supply was the most important factor. On the other hand, 6 mid-lower-level districts saw government policies act as important variables and were commonly influenced by financial regulatory policies.
The Journal of the Korea institute of electronic communication sciences
/
v.8
no.2
/
pp.301-306
/
2013
The Ratio of APT jeonse to purchase price was still rising. The interaction of APT Purchase and Jeonse price indices by region analysis in order to analyze this phenomenon, and results were summarized as follows. First, because the regional APT purchase and jeonse prices appears the rise and fall differently by region, regional polarization was deepening. Second, the recently real estate market was analyzed the province's booming real estate and the downturn of the metropolitan area. So, the ratio of APT jeonse to purchase price was continued to rise. Finally, the Ratio of APT jeonse to purchase price changing rate is (+) increased if the APT purchase price changing rate is larger then the APT purchase price changing rate and smaller then is (-) decreased.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.