• Title/Summary/Keyword: 아칭작용

Search Result 44, Processing Time 0.019 seconds

Arching Action Effect for Inelastic Seismic Responses of Bridge Structures (교량의 비탄성 지진응답에 대한 아칭작용의 영향)

  • Song, Jong-Keol;Nam, Wang-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2A
    • /
    • pp.131-143
    • /
    • 2009
  • Under transverse earthquake shaking, arching action of bridge structures develops along the deck between the abutments thus providing the so-called deck resistance. The magnitude of the arching action for bridge structures is dependent on the number of spans, connection condition between deck and abutment or piers, and stiffness ratio between superstructure and substructure. In order to investigate the arching action effects for inelastic seismic responses of PSC Box bridges, seismic responses evaluated by pushover analysis, capacity spectrum analysis and nonlinear time-history analysis are compared for 18 example bridge structures with two types of span numbers (short bridge, SB and long bridge, LB), three types of pier height arrangement (regular, semi-regular and irregular) and three types of connection condition between superstructure and substructure (Type A, B, C). The arching action effects (reducing inelastic displacement and increasing resistance capacity) for short bridge (SB) is more significant than those for long bridge (LB). Semi-regular and irregular bridge structures have more significant arching action than regular bridges.

A Theoretical Study on Arching Effect of Embankment Pile Grid (격자배치 성토지지말뚝의 아칭효과에 대한 이론적 연구)

  • Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.302-309
    • /
    • 2017
  • The influence of the pile diameter, center to center pile spacing, internal friction angle of embankment soil, and height of embankment on the arching efficacy of the embankment pile was investigated. The arching efficacy, which was derived by the arch model developed in the embankment soil was calculated using two methods, one that considers crown failure of the arch and the other that considers load on the pile cap and critical relative spacing ratio for which the arching efficacy calculated by the two methods are the same. According to the computed results in this study, the arching efficacy calculated from a consideration of the load on pile cap governs when the relative spacing ratio becomes smaller and that calculated from the theory of crown failure governs when the relative spacing ratio becomes larger. The critical relative spacing ratio below which the arching efficacy calculated from a consideration of the load on pile cap governs the design decreases with increasing value, which is defined by the ratio of the pile diameter to the pile center to center spacing. Critical relative spacing ratios, which correspond to the values of 0.5 and 0.2 were 0.35 and 0.85, respectively. Considering the computed results, the critical relative spacing ratio decreases with increasing Rankine passive earth pressure coefficient and critical relative spacing ratios, which correspond to values of 5 and 2, were 0.23 and 0.85, respectively. The arching efficacy, which corresponds to the area ratio of 9%, was 54% and the one that corresponds to the value of 3 was 61%; the critical relative spacing ratios, which correspond to those arching efficacies, were greater than 0.5.

Arching Effects on Stability of Translating Rigid Retaining Walls (아칭효과가 평행이동하는 강성옹벽의 안정성에 미치는 영향)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.6
    • /
    • pp.127-136
    • /
    • 2004
  • The soil arching in the backfill, which affects the magnitude and distribution of active earth pressure on a retaining wall, has also an effect on the stability and cross-sectional area of the retaining wall. In this study, results obtained from Paik's equation that includes arching effect on active earth pressure are compared with those from Coulomb theory to investigate the influence of the soil arching on active earth pressure, overturning moment, stability and cross-sectional area of translating rigid retaining walls. The comparisons show that the active forces including arching effects are always higher than those from Coulomb theory, irrespective of $\phi$ and $\delta$ values. The overturning moments, shear force and moment on the rigid wall are also higher when considering arching effects than when not considering arching effects. The deviation of shear forces and moments by including and excluding arching effects becomes maximum at the height of 0.02-0.08 times wall height from the base of the wall. Therefore, if a translating rigid retaining walls is designed based on Coulomb theory, the wall may reach sliding and overturning failures due to arching effect in the backfill and the cross-sectional area of the wall, especially at lower part of the wall, may not be sufficient to resist to shear force and moment.

Active Earth Pressure Acting on Excavation Wall Located Near Existing Wall Face (도심지 인접 굴착 시 굴착벽에 작용하는 횡방향 토압에 대한 연구)

  • Lee, Jin-Sun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.67-74
    • /
    • 2012
  • The arching effect of the active earth pressure acting on an excavation wall subjected to close excavation reduces lateral earth pressure acting on excavation wall. In this paper, the arching effect was estimated for varying width to excavation depth ratio and wall friction angle by analytical and numerical methods verified with centrifuge test results. The arching effect is significant when the width to excavation depth ratio and wall friction angle is decreased and increased, respectively. The analytical solution derived from the classical arching theory suggested by Handy(1985) shows good agreement with the numerical solution than the other solutions.

Analysis on the characteristics of the earth pressure distribution induced by the integrated steel pipe-roof construction (일체형 강관 파이프루프 시공에 따른 주변 지반의 토압 분포 특성 분석)

  • Sim, Youngjong;Jin, Kyu-Nam;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.5
    • /
    • pp.455-468
    • /
    • 2013
  • In recent, various types of steel pipe-roof methods, which is reinforced by mortar after propulsion of steel pipe into the ground, have been used for the construction of trenchless underpass. Integrated steel pipe-roof has flexural stiffness and can resist against overburden load and reduce the stress acting on the concrete underpass structures. Due to arching effect, vertical and horizontal stress distribution around the steel pipe-roof is changing. In this study, therefore, the characteristic of stress distribution around the underpass induced by the construction of integrated steel pipe-roof is investigated by using numerical method. To examine the soil-structure interaction, interface element is introduced. Results show that vertical stress acting on the concrete structure placing inside the steel pipe-roof is significantly reduced due to arching effect and flexural stiffness of integrated steel pipe-roof. Design load can be reduced and effective design of underpass will be available if the earth pressure reduction due to arching effect is considered in the design stage.

Active Earth Pressure behind Rigid Retaining Wall Rotating about the Base (저점을 중심으로 회전하는 강성옹벽에 작용하는 주동토압)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.193-203
    • /
    • 2004
  • Arching effects in backfill materials generate a nonlinear active earth pressure distribution on a rigid retaining wall with rough face, and arching effects on the shape of the nonlinear earth pressure distribution depends on the mode of wall movement. Therefore, the practical shape of failure surface and arching effect in the backfill changed with the mode of wall movement must be considered to calculate accurate magnitude and distribution of active earth pressure on the rigid wall. In this study, a new formulation for calculating the active earth pressure on a rough rigid retaining wall rotating about the base is proposed by considering the shape of nonlinear failure surface and arching effects in the backfill. In order to avoid mathematical complexities in the calculation of active earth pressure, the imaginary failure surface composed of four linear surfaces is used instead of the nonlinear failure surface as failure surface of backfills. The comparisons between predictions from the proposed equations and existing model test results show that the proposed equations produce satisfactory predictions.

A Numerical Study on Vertical Load Acting on Corrugated Metal Culvert under Negative Arching Condition (부(-)아칭효과 발현시 파형강판 암거에 작용하는 연직하중에 대한 수치해석적 연구)

  • Lee, Seung-Hyun;Kim, Byoung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1271-1276
    • /
    • 2006
  • Vertical loads acting on corrugated metal culverts under negative arching condition were investigated through numerical analyses. Four kinds of corrugated metal culverts with span of 3m were considered in numerical analyses. Also, depths of cover were varied from 1m to 6m with increment of 1m. According to numerical analyses, magnitudes of vertical loads acting on culverts under the condition of negative arching were similar as overburden load on culvert. Furthermore, magnitudes of vertical loads acting on culverts supported by pile foundation were similar as those without pile foundation when depths of cover were less than about 2m. For larger depths of cover which are greater than about two times of span of culvert, magnitudes of vertical loads were slightly larger than those without pile foundation and its tendency becomes more clear as flexural rigidity of corrugated metal increases.

  • PDF

Nonlinearly Distributed Active Earth Pressure on n Translating Rigid Retaining Wall : I. Formulation (평행이동하는 강성옹벽에 작용하는 비선형 주동토압 : I. 정식화)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.181-189
    • /
    • 2003
  • The active earth pressure against a rigid retaining wall has been generally calculated using either Rankine's or Coulomb's formulation. Both assume that the distribution of active earth pressure exerted against the wall is triangular. However, many experimental results show that the distribution of the active earth pressure on a rigid rough wall is nonlinear. These results do not agree with the assumption used in both Rankine's and Coulomb's theories. The nonlinearity of the active earth pressure distribution results from arching effects in the backfill. Several researchers have attempted to estimate the active earth pressure on a rigid retaining wall, considering arching effect in the backfill. Their equations, however, have some limitations. In this paper, a new formulation for calculating the active earth pressure on a rough rigid retaining wall undergoing horizontal translation is proposed. It takes into account the arching effects that occur in the backfill.

A rational estimating method of the earth pressure on a shaft wall considering the shape ratio (벽체형상비의 영향을 합리적으로 고려한 원형수직구 벽체에 작용하는 토압산정방법)

  • Shin, Young-Wan;SaGong, Myung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.143-155
    • /
    • 2007
  • The earth pressure acting on a circular shaft wall is smaller than that acting on the wall in plane strain condition due to the three dimensional axi-symmetric arching effect. Accurate estimation of the earth pressure is required for the design of the shaft wall. In this study, the stress model considering the decrease of earth pressure due to the horizontal and vertical arching effect and the influence of shape ratio (shaft height/radius) is proposed. In addition, model test on the sandy soil is conducted and a comparison is made between the stress model and the test results. The comparison shows that the proposed stress model is in agreement with test results; decrease of shape ratio (increase of radius) leads to stress state equal to the plane strain condition and approximate stress distribution is found between stress model and model test results.

  • PDF

Numerical Study on the Effects of Geosynthetic Reinforcement on the Pile-supported Embankment (수치해석을 통한 성토지지말뚝에 대한 토목섬유 보강 효과 분석)

  • Lee, Su-Hyung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.276-284
    • /
    • 2009
  • Recently pile-supported embankments have emerged as an optimum method when the rapid construction and strict deformation of structures are required on soft soils. Especially geosynthetic-reinforced and pile-supported (GRPS) embankments are used worldwide as they can provide economic and effective solutions. However the load transfer mechanism in GRPS embankments is very complex, and not yet fully understood. Particularly the purpose and effect of geosynthetic inclusion are ambiguous and considered as an auxiliary measure assisting the arching effect of piles. Numerical parametric study using 3D finite element method has been conducted to investigate the effect of geosynthetic reinforcement on the load transfer mechanism of GRPS embankments. Numerical results suggested that as more stiffer geosynthetic is included, arching effect decreases considerably and the load concentration to the piles mostly caused by tension effect of geosynthetic. This finding is contradictory to the common understanding that geosynthetic inclusion only enhance the efficiency of load transfer. Consequently the design parameters determined from the numerical analyses are compared with those of three existing design methods. The problems of the existing methods are discussed.