• Title/Summary/Keyword: 아지드

Search Result 13, Processing Time 0.016 seconds

Synthesis of Characterization of Poly(alkylene oxide) Copolyols by Catioinc Ring Opening Polymerization and Their Azide Functionalized Copolyols (양이온 개환중합에 의한 폴리알킬렌 옥사이드 코폴리올의 합성과 아지드화 코폴리올의 특성 연구)

  • Lee, Jae-Myung;Seol, Yang-Ho;Kwon, Jung-Ok;Jin, Yong-Hyun;Noh, Si-Tae
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.267-276
    • /
    • 2020
  • Poly(epichlorohydrin) copolyol series (PECH copolyols) were synthesized via cationic ring-opening copolymerization (ROCP) of oxirane-based monomers and effects of reaction temperature, solvent type, and initiator were studied. As a comonomer, two types of alkylene oxides were used, and polymerization conditions were conducted both with diethylene glycol (DEG) as an initiator in methylene chloride (MC) solvent and tripropylene glycol (TPG) in toluene solvent. In order to induce the active monomer (AM) mechanism in the ring-opening copolymerization reaction, the monomer was injected by an incremental monomer addition (IMA) method using a syringe pump, and the polymerization was performed at -5 ℃. PECH copolyol, a synthesized ephichorohydrin (ECH)-based copolyol, was converted to glycidyl azide-based energy-containing copolyol (GAP copolyol) by azadizing the ECH unit through a substitution reaction. It was confirmed that the synthesized azide copolyol had little effects on changes of the solvent and the initiator. Also, the molecular weight increased 500 after the azide reaction, thereby the GAP copolyol was polymerized as designed. As the content of the comonomer increased, both the Tg and viscosity tended to decrease due to the influence of the alkyl chain length. It is possible to fundamentally prevent CH3N3 amount produced in the azide reaction process, and it is expected that a large-scale process could be achievable.

Synthesis and Characterization of Alkoxy and Alkylamino GAP Copolymer for Energetic Thermoplastic Elastomer (ETPE) (에너지화 열가소성 탄성체에 사용될 수 있는 알콕시 계열과 알킬 아민 계열 GAP Copolymer의 합성 및 분석)

  • Lim, Minkyung;Jang, Yoorim;Kim, Hancheul;Rhee, Hakjune;Noh, Sitae
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.81-87
    • /
    • 2019
  • In this study, synthetic methods and physical properties for a new class of glycidyl azide polymer (GAP) were investigated for energetic thermoplastic elastomers (ETPE). Four kinds of GAP copolymer polyols were synthesized by introducing nucleophiles such as azide, alkoxide and alkyl amine into poly(epichlorohydrin) (PECH). The GAP copolymer synthetic reaction can be evaluated as an environmental benign and efficient synthetic method due to the simultaneous one-step reaction using two kinds of nucleophiles and the complete consumption of sodium azide. The relative stoichiometric substitution ratio analysis and the progress of reaction were checked and monitored by inverse gated decoupled $^{13}C$ NMR and Fourier transform infrared (FT-IR) spectroscopy. The glass transition temperature and molecular weight were measured by differential scanning calorimetry (DSC) and gel permeation chromatography (GPC) analysis. The synthesized poly($GA_{0.8}-butoxide_{0.2}$), poly($GA_{0.7}-n-butylamine_{0.3}$), poly($GA_{0.7}-dipropylamine_{0.3}$) and poly($GA_{0.7}-morpholine_{0.3}$) had a glass transition temperature ranged from -39 to $-26^{\circ}C$.

Development of Oligonucleotide Chip for Detection of Drug-Resistant Mycobacterium Tuberculosis (약제내성 결핵균의 검출을 위한 Oligonucleotide Chip의 개발)

  • Song, Eunsil;Park, Heekyung;Jang, Hyunjung;Kim, Hyomyung;Chang, Chulhun L.;Kim, Cheolmin
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.1
    • /
    • pp.41-58
    • /
    • 2003
  • Background : The resurgence of tuberculosis and the widespread emergence of multidrug-resistant M. tuberculosis have emphasized the importance of rapid and accurate diagnostic procedures. Recently, the oligonucleotide chip has proven to be a useful tool in the rapid diagnosis of infectious diseases. The purpose of this study was to rapidly and accurately detect specific mutations in the rpoB, katG and rpsL genes associated with rifampin, isoniazid and streptomycin resistance in M. tuberculosis, respectively, using a single oligonucleotide chip. Method : For detection of drug-resistance, 7 wild-type and 13 mutant-type probes for rifampin, 2 wild-type and 3 mutant-type probes for isoniazid, and 2 wild-type and 2 mutant-type probes for streptomycin were designed and spotted onto glass slides. Fifty-five cultured samples of M. tuberculosis were amplified by PCR, and then underwent hybridization and scanning. Direct sequencing was done to verify the results from the oligonucleotide chip and to analyze the types of mutations. Result : Thirty-five cases out of 40 rifampin-resistant strains(~88%) had mutations in the rpoB gene. One case had a new mutation(D516F, GAC R TTC) and another known mutation together. Twenty cases out of 42 isoniazid-resistant strains(~50%) had mutations in the katG gene, while 7 cases out of 9 streptomycin-resistant strains(~78%) had mutations in the rpsL gene. From these results, the oligonucleotide chip was confirmed to be able to detect the most frequent mutations from the genes associated with rifampin, isoniazid and streptomycin resistance. The results proved that the drug-resistance detection probes were specific. When the results from the oligonucleotide chip and DNA sequencing were compared, the types of mutations were exactly matched. Conclusion : The diagnostic oligonucleotide chip with mutation specific probes for drug resistance is a very reliable and useful tool for the rapid and accurate diagnosis of drug resistance against rifampin, isoniazid and streptomycin in M. tuberculosis infections.