• Title/Summary/Keyword: 아임계 압력

Search Result 23, Processing Time 0.023 seconds

Saccharification of lignocellulosics by Supercritical Water (초임계수를 이용한 목질바이오매스의 당화 가능성)

  • Choi, Joon-Weon;Lim, Hyun-Jin;Han, Gye-Sung;Choi, Don-Ha
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.525-528
    • /
    • 2006
  • 아임계 및 초임계수에 의한 목질바이오매스의 당화특성을 분석하기 위하여 분해공정 동안 압력을 23MPa(물의 임계압력)로 고정하고 물의 아임계 온도$(325^{\circ}C,\;350^{\circ}C)$와 초임계 온도$(380^{\circ}C,\;400^{\circ}C,\;425^{\circ}C)$에서 현사시나무 목분을 각각 60초 동안 처리하였다. 생성된 현사시나무의 분해산물에는 액상과 고형분의 분해산물이 섞여 있었다. 각 처리조건에 따른 목질바이오매스의 분해율은 온도가 상승함에 따라 증가하였으며 초임계 온도인 $425^{\circ}C$에서 최고 83.1%의 분해율을 나타냈다. 아임계 및 초임계수에 의해서 생성된 단당류는 고성능 음이온 교환 크로바토그래프(HPAEC)를 이용하여 분석하였다. 목질바이오매스의 초임계수 분해과정에서 처리 온도가 높아지면서 단당류 수율은 증가하는 경향을 보였으며, $425^{\circ}C$에서 가장 높은 7.3%의 단당류 수율을 나타내었다. 아임계 온도 범위에서는 현사시나무의 섬유소 성분 중에서 자일란이 우선적으로 분해되어 자일로스의 생성비율이 비교적 높았으며, 처리온도가 높아지면서 셀롤로오스의 분해에 의한 글루코오스 생성율이 급격히 상승하였다. 이렇게 생성된 단당류 성분들은 고온의 반응조건하에서 열분해 반응에 의해서 더욱 분해되어 퓨란계 화합물로 변형되었다.

  • PDF

Vaporization of Hydrocarbon Fuel Droplet in Supercritical Environments (아임계 및 초임계 탄화수소 연료 액적의 기화 특성 연구)

  • Lee,Gyeong-Jae;Lee,Bong-Su;Kim,Jong-Hyeon;Gu,Ja-Ye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.85-93
    • /
    • 2003
  • Droplet vaporization at various ambient pressures is studied numerically by formulating one dimensional evaporation model in the mixture of hydrocarbon fuel and air. The ambient pressure ranged from atmospheric conditions to the supercritical conditions. The modified Soave-Redlich-Kwong state equation is used to account for the real gas effects in the high pressure condition. Non-ideal thermodynamic and transport properties at near critical and supercritical conditions are considered. Some computational results are compared with Sato's experimental data for the validation of calculations. The comparison between predictions and experiments showed quite a good agreement. The droplet lifetime increases with increasing pressure at temperature lower than the critical temperature, however, it decreases with increasing pressure at temperature higher than the critical temperature. The solubility of nitrogen can not be neglected in the high pressure and it becomes higher as the temperature and the pressure go up.

Thermodynamic Performance Characteristics of Transcritical Organic Rankine Cycle Depending on Source Temperature and Working Fluid (열원온도와 작동유체에 따른 초월임계 유기랭킨사이클의 열역학적 성능 특성)

  • Kim, Kyoung Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.699-707
    • /
    • 2017
  • This study presents a comparative thermodynamic analysis of subcritical and transcritical organic Rankine cycles for the recovery of low-temperature heat sources considering nine substances as the working fluids. The effects of the turbine inlet pressure, source temperature, and working fluid on system performance were all investigated with respect to metrics such as the temperature distribution of the fluids and pinch point in the heat exchanger, mass flow rate, and net power production, as well as the thermal efficiency. Results show that as the turbine inlet pressure increases from the subcritical to the supercritical range, the mismatch between hot and cold streams in the heat exchanger decreases, and the net power production and thermal efficiency increase; however, the turbine size per unit power production decreases.

Effect of Injector Geometry on Cryogenic Jet Flow (극저온 제트 유동에 대한 분사기 형상의 영향)

  • Cho, Seong-Ho;Park, Gu-Jeong;Khil, Tae-Ock;Yoon, Young-Bin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.348-353
    • /
    • 2011
  • Characteristics of cryogenic single jet flow were investigated. Liquid nitrogen was injected into a high-pressure chamber and formed single jet. Ambient condition around jet was changed from subcritical to superctirical condition of nitrogen. Injector geometries also were changed. A shape of the jet and core diameter were measured by flow visualization technique, and core spreading angle was calculated. Flow instability was found at atmospheric pressure condition. As ambient pressure increased, core spreading angle was increased and maintained after certain pressure.

Cryogenic Jet Injection Test Using Liquid Nitrogen (액체 질소를 이용한 극저온 단일 제트 분사 시험)

  • Cho, Seong-Ho;Khil, Tae-Ock;Park, Gu-Jeong;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.597-600
    • /
    • 2010
  • Cold flow injection test was conducted to investigate the characteristics of cryogenic liquid nitrogen jet at sub to supercritical condition. Single jet injector element was installed in high pressure chamber to investigate the effect of ambient pressure around the jet, injector geometry and flow conditions. Experimental results showed obvious differences between jet characteristics under subcritical and supercritical condition. Effect of injector inlet shape also was investigated.

  • PDF

A Study on Subcritical Instability of Axisymmetric Supersonic inlet (축대칭 초음속 흡입구의 아임계 불안정성 연구)

  • Shin, Phil-Kwon;Park, Jong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.29-36
    • /
    • 2004
  • Supersonic inlet buzz can be defined as unstable subcritical operation associated with fluctuating internal pressures and a shock pattern oscillating about the inlet entrance. The flow pulsations could result in flameout in the combustor or even structural damage to the engine. An experimental study was conducted to investigate the phenomenon of supersonic inlet buzz on axisymmetric, external-compression inlet. An inlet model with a cowl lip diameter of 30mm was tested at a free stream Mach number of 2.0. Subcritical instability was investigated by considering the frequency of pressure pulsation and shock wave structure at the inlet entrance. The results obtained show that total pressure recovery ratios were varied from 0.42 to 0.78, and capture area ratio from 0.34 to 0.98. The frequency of the subcritical flow increased with decrease in capture area ratios. Frequency was measured at $224{\sim}240Hz$.

Visualization of Doublet Impinging Jet Spray in Supercritical Mixed Hydrocarbon Fluid (초임계 탄화수소계열 혼합유체의 이중 충돌 제트 분무 가시화)

  • Song, Juyeon;Choi, Myeung Hwan;An, Jeongwoo;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.53-58
    • /
    • 2021
  • Based on surrogate model, a hydrocarbon mixture was analyzed by visualizing the impinging break up mechanism in subcritical and supercritical conditions. Decane and methylcyclohexane with different critical pressures and temperatures were selected as experimental fluids. The impinging injector was installed inside the chamber, and the spray was visualized through a speed camera in subcritical and supercritical conditions. The injection condition of the mixture and chamber was kept constant at Pr(P/Pc) = 1, and Tr(T/Tc) was increased from 0.48 to 1.02. As Tr increased, the spray angle increased, and the sheet length decreased as the properties of the mixture reached each critical point. In addition, when the mixture approached the near critical point, it was shown that the change in density gradient was largely observed out of the impinging break up mechanism.

Characteristics of marine algae extracts using subcritical water extract method (아임계 추출법을 이용한 해조류 추출물의 특성)

  • Na, Hwan Sik;Kim, Jin Young;Park, Jong Soo;Choi, Gyeong Cheol;Yang, Soo In;Lee, Ji Heon;Cho, Jeong Young;Ma, Seung Jin
    • Food Science and Preservation
    • /
    • v.21 no.1
    • /
    • pp.62-68
    • /
    • 2014
  • This study was performed in order to investigate the functional components of 5 kinds of marine algae. We have collected 5 samples of marine algae, such as the sea mustard (Undaria pinnatifida), sea tangle (Laminaria iaponice), sea weed fusiforme (Hizikia fusiforme), green laver (Entetomotpha), laver (Phophyratenera), which have been harvested in Jeollanam-do. In order to examine the functional effects, 5 kinds of marine algae were extracted with hot water ($80^{\circ}C$, 4 hr), ethanol and methanol (R.T., 4 hr), and subcritical water extract (SWE, 3 MPa, $90^{\circ}C$, $150^{\circ}C$, $210^{\circ}C$). A higher yield of extract was obtained through SWE method (3 MPa, $210^{\circ}C$) in all of the samples obtained. The highest total sugar content was 427.4 mg/g in green laver extracted with SWE (3 MPa, $210^{\circ}C$). The content of the SWE total phenolic compounds was higher than that of the water and solvent (methanol, ethanol) extracts. The anti-oxidative activities of the extracts from 5 kinds of marine algae were examined through the DPPH radical scavenging activity test. The SWE (3 MPa, $150^{\circ}C$ and $210^{\circ}C$) of the marine algae was the highest among all of the extracts. As per the results, the SWE of the marine algae contained more functional components and it had a higher antioxidant activity than those of the other extracts. The $IC_{50}$ value of tyrosinase in seaweed fusiforme and laver were higher than those of the other samples. These results strongly support the possible use of marine algae as functional materials.

Extraction of Athabasca Oil Sand with Sub- and Supercritical Water (아임계 및 초임계수를 이용한 Athabasca 오일샌드의 추출)

  • Park, Jung Hoon;Son, Sou Hwan;Baek, Il Hyun;Nam, Sung Chan
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.281-286
    • /
    • 2009
  • Bitumen extraction and sulfur removal from Athabasca oil sand were conducted using water in sub- and supercritical condition. Bitumen yield in micro reactor was investigated in the pressure range of 15~30 MPa, the temperature of 360 and $380^{\circ}C$ and water density $0.074{\sim}0.61g/cm^3$ for 0~120 min. Bitumen yield increased with reaction pressure irrespective of temperature and dramatically increased in especially supercritical region due to hydrogen formed from water gas shift reaction. Total amount of gas product decreased with reaction pressure but the portion of sulfur and hydrogen increased a little with increasing pressure to 25 and 30 MPa. It is seen that supercritical condition was favourable to the hydrogen formation and sulfur removal. Bitumen yield and sulfur removal from original oil sand reached a maximum 22% and 40% respectively in supercritical condition(the reaction time of 60 min at $380^{\circ}C$ and 25 or 30 MPa).

Power Enhancement Potential of a Low-Temperature Heat-Source-Driven Rankine Power Cycle by Transcritical Operation (초월임계 운전에 의한 저온 열원 랭킨 동력 사이클의 출력 향상 가능성)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Lee, Young-Soo;Ra, Ho-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1343-1349
    • /
    • 2011
  • In this study, the power enhancement potential of a Rankine power cycle by transcritical operation was investigated by comparing the power of an HFC-134a subcritical cycle with that of an HFC-125 transcritical cycle, for a low-grade heat source with a temperature of about $100^{\circ}C$. For a fair comparison using different working fluids, each cycle was optimized by three design parameters from the viewpoint of power. In contrast to conventional approaches, the working fluid's heat transfer and pressure drop characteristics were considered in the present approach, with the aim of ensuring a more realistic comparison. The results showed that the HFC-125 transcritical cycle yields 9.4% more power than does the HFC-134a subcritical cycle under the simulation conditions considered in the present study.