• Title/Summary/Keyword: 아이템 기반 추천

Search Result 148, Processing Time 0.029 seconds

Design Algorithm of Location based Recommendation System by Vector Analysis (위치기반 추천 시스템의 벡터 분석에 의한 알고리즘 설계)

  • Bae Keesung;Suh Songlee;Suk Minsoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.11a
    • /
    • pp.753-756
    • /
    • 2004
  • 유비쿼터스 컴퓨팅 환경에서 추천시스템은 무수히 많은 정보들에 대하여 사람들이 적절한 선택을 할 수 있도록 도와준다. 사용자에게 필요한 정보를 찾아주고, 정보들의 우선순위를 결정해주는 추천시스템에 있어서 사용자의 위치는 보다 가치있는 정보를 제공할 수 있는 도구가 된다. 위치기반 추천시스템은 사용자가 아이템들로부터 얼마나 멀리 떨어져있는가를 고려하여 상위 리스트들을 제공할 수 있어야 한다. 하지만 일반적인 추천시스템에서 주로 사용되고 있는 기존의 사용자 기반 협업필터링 기법은 사용자의 자발적인 정보 입력에 의존함으로써 일정한 수의 사용자 정보가 축적되어 있지 않으면 정확한 추천이 불가능한 단점이 있다. 본 논문에서는 아이템에 기반한 협업 필터링 기법을 확률적으로 분석하고, 아이템의 위치에따라 랭킹을 부여하는 방법과 사용자의 위치정보를 추천알고리즘에 적용시켜 보다 정확하고 효율적인 추천방법을 제안하였다.

  • PDF

A Study on Recommender Technique Applying User Activity and Time Information (사용자 활동과 시간 정보를 적용한 추천 기법에 관한 연구)

  • Yun, So-Young;Youn, Sung-Dae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.3
    • /
    • pp.543-551
    • /
    • 2015
  • As the use of internet and mobile devices became generalized, users utilizing search and recommendation in order to find the information they want in the midst of various websites have become common. In order to recommend more appropriate item for users, this paper proposes a recommendation technique that reflects the users' preference change following the flow of time by applying users' activity and time information. The proposed technique, after classifying the data in categories including the tag information that is considered at the time of choosing the items, only uses the data that users' preference change following the flow of time is reflected. For the users who prefer the corresponding category, the item that is extracted by applying tag information to collaboration filtering technique is recommended and for general users, items are recommended based on the ranking calculated by using the tag information. The proposed technique was experimented by using hetrec2011-movielens-2k data set. The experiment result indicated that the proposed technique has been more enhanced the accuracy, appropriacy, compared to item-based, user-based method.

An Approach to Improve the Credibility of Similarity Calculation in CF-based Recommender Systems (협업필터링 기반 추천시스템에서 유사도 계산의 신뢰성 향상 방안)

  • Lee, Gun Woo;Jeon, Dong Yeoup;Ha, Jiwoon;Kim, Hyung-ook;Kim, Sang-Wook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1144-1145
    • /
    • 2015
  • 협업 필터링 기반 추천 시스템에서는 이웃 사용자를 정확하게 찾는 것이 추천 정확도에 핵심적인 영향을 미친다. 그러나 기존의 유사도 척도는 사용자가 공통으로 평가한 아이템만을 고려하여 유사도를 계산하기 때문에 이러한 아이템이 적은 사용자 간의 유사도가 부정확하게 계산되는 문제가 있다. 본 논문에서는 이러한 문제를 극복하기 위해 공통으로 평가하지 않은 아이템을 함께 고려하여 유사도를 계산하는 방안을 제안한다. 또한, 실험을 통해 제안하는 방안이 협업 필터링 기반 추천 시스템의 정확도 향상에 기여함을 보인다.

The User Information-based Mobile Recommendation Technique (사용자 정보를 이용한 모바일 추천 기법)

  • Yun, So-Young;Youn, Sung-Dae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.379-386
    • /
    • 2014
  • As the use of mobile device is increasing rapidly, the number of users is also increasing. However, most of the app stores are using recommendation of simple ranking method, so the accuracy of recommendation is lower. To recommend an item that is more appropriate to the user, this paper proposes a technique that reflects the weight of user information and recent preference degree of item. The proposed technique classifies the data set by categories and then derives a predicted value by applying the user's information weight to the collaborative filtering technique. To reflect the recent preference degree of item by categories, the average of items' rating values in the designated period is computed. An item is recommended by combining the two result values. The experiment result indicated that the proposed method has been more enhanced the accuracy, appropriacy, compared to item-based, user-based method.

A Study on Generation of Social Network for Movie Tastes based on Emotional Verb Selections (감정동사 선택을 통한 영화취향 기반의 소셜 네트워크 구축에 관한 연구)

  • Song, Min-A;NamGung, Hyeon;Kim, Hong-Gi;Yun, Ju-Hyeon
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2008.10a
    • /
    • pp.94-97
    • /
    • 2008
  • CD Now, Video Recommender, Amazon 등과 같은 현재의 협업 기반 필터링 서비스는 일반적으로 서비스를 요구하는 사용자가 관심을 가진 아이템과 비슷한 속성의 아이템을 추천하고 있다. 하지만 영화와 같은 경우 사용자의 주관적 평가가 배제된-명시적 속성만으로는 아이템의 특징을 표현하는데 한계가 있다. 때문에 이를 이용한 방법은 서비스를 제공하는 데 있어 제한을 가지게 된다. 따라서 본 논문에서는 소셜 네트워크 서비스 사용자가 영화에 대한 자신의 감정을 간단한 선택을 통해 표현함으로써 쉽고 편하게 사용자의 영화 취향을 도출하고 이를 기반한 소셜 네트워크를 형성하는 방법에 대해 논의해 보고자 한다. 이러한 방법을 통해 일반적으로 사용되는 빈도나 인기도 기반의 추천이 아닌 실제 사용자와 유사한 취향과 특성을 가지는 사용자들은 연결해줌으로써 보다 사용자에 특화된 추천을 가능하게 할 것이다.

  • PDF

Music Recommendation Using Data Mining (데이터 마이닝을 이용한 음악 추천)

  • Lee, Hye-In;Yun, So-Young;Youn, Sung-Dae
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.372-375
    • /
    • 2018
  • 본 논문은 온라인 음원 서비스 이용자들이 겪는 선택의 어려움을 최소화하고, 낭비되는 시간을 줄이기 위한 음악 추천 기법을 제안하고자 한다. 제안하는 기법은 개인정보의 이용 없이 아이템을 추천할 수 있는 아이템 기반 협업필터링 알고리즘을 사용한다. 더 정확한 추천을 위해 음원의 메타데이터를 이용한다. 실험을 통해 제안하는 기법이 메타데이터를 이용하지 않을 때보다 추천 성능이 향상되는 것을 확인하였다.

SOM Clustering Method based on RFM Analysis for Predicting Customer Purchase Pattern in u-Commerce (RFM 분석 기반 고객 구매 패턴을 예측을 위한 SOM 클러스터링 방법)

  • Cho, Young Sung;Moon, Song Chul;Ryu, Keun Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.07a
    • /
    • pp.185-187
    • /
    • 2013
  • 유비쿼터스 컴퓨팅이 생활의 일부가 되어가면서 정보의 양도 급속도로 늘어나고 있으며, 이로 인해 많은 데이터 속에서 정보를 찾아내는 기술이 부각되고 있다. 고객 기반의 협력적 필터링을 이용한 고객 선호도 예측 방법에서는 아이템에 대한 사용자의 선호도를 기반으로 이웃 선정 방법을 사용하므로 아이템에 대한 내용을 반영하지 못할 뿐만 아니라 희박성 문제를 해결하지 못하고 있다. 그리고 비슷한 선호도를 가진 일부 아이템의 정보를 바탕으로 하기 때문에 아이템의 속성은 무시하는 경향이 있다. 본 논문에서는 유비쿼터스 상거래에서 RFM(Recency, Frequency, Monetary) 분석 기반의 SOM을 이용한 군집방법을 제안한다. 제안 방법은 고객의 구매 데이터 기반의 유사한 속성의 데이터끼리의 클러스터링을 통해 보다 빠른 시간 내에 고객 성향에 맞는 추천이 가능한 구매 패턴 추출이 가능하다.

  • PDF

Personalized Recommendation System using FP-tree Mining based on RFM (RFM기반 FP-tree 마이닝을 이용한 개인화 추천시스템)

  • Cho, Young-Sung;Ho, Ryu-Keun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.2
    • /
    • pp.197-206
    • /
    • 2012
  • A exisiting recommedation system using association rules has the problem, such as delay of processing speed from a cause of frequent scanning a large data, scalability and accuracy as well. In this paper, using a Implicit method which is not used user's profile for rating, we propose the personalized recommendation system which is a new method using the FP-tree mining based on RFM. It is necessary for us to keep the analysis of RFM method and FP-tree mining to be able to reflect attributes of customers and items based on the whole customers' data and purchased data in order to find the items with high purchasability. The proposed makes frequent items and creates association rule by using the FP-tree mining based on RFM without occurrence of candidate set. We can recommend the items with efficiency, are used to generate the recommendable item according to the basic threshold for association rules with support, confidence and lift. To estimate the performance, the proposed system is compared with existing system. As a result, it can be improved and evaluated according to the criteria of logicality through the experiment with dataset, collected in a cosmetic internet shopping mall.

A Hybrid Music Recommendation System Combining Listening Habits and Tag Information (사용자 청취 습관과 태그 정보를 이용한 하이브리드 음악 추천 시스템)

  • Kim, Hyon Hee;Kim, Donggeon;Jo, Jinnam
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.2
    • /
    • pp.107-116
    • /
    • 2013
  • In this paper, we propose a hybrid music recommendation system combining users' listening habits and tag information in a social music site. Most of commercial music recommendation systems recommend music items based on the number of plays and explicit ratings of a song. However, the approach has some difficulties in recommending new items with only a few ratings or recommending items to new users with little information. To resolve the problem, we use tag information which is generated by collaborative tagging. According to the meaning of tags, a weighted value is assigned as the score of a tag of an music item. By combining the score of tags and the number of plays, user profiles are created and collaborative filtering algorithm is executed. For performance evaluation, precision, recall, and F-measure are calculated using the listening habit-based recommendation, the tag score-based recommendation, and the hybrid recommendation, respectively. Our experiments show that the hybrid recommendation system outperforms the other two approaches.

Collaborative Filtering Using Topic Models for Rating Based Recommender Systems (평점 기반 추천시스템을 위한 토픽 모델 협업필터링)

  • Kim, Kwang-Seob;Jung, Ho-Gyeong;Lee, Hyun-Jong;Lee, Hyung-Joon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.381-383
    • /
    • 2012
  • 협업필터링은 지금까지 많은 추천시스템 연구에서 비교대상이 되거나 더 좋은 추천시스템 방법론을 개발하기 위해서 응용되고 있다. 일반적으로 협업필터링 기법은 명시적으로 관찰된 사용자들의 행동을 기반하는 방법이다. 본 연구에서는 LDA(Latent Dirichlet Allocation)을 이용해 사용자와 추천 대상이 되는 아이템의 숨겨진 특성을 추출하고, 이를 협업필터링기법에 응용했다. 영화 추천시스템 구축을 위한 실험에서, 사용자의 선호도는 다양한 영화 장르를 선호하는 비율로 나타난다는 가정(사용자기반)과 영화 또한 장르의 비율로 표현이 된다는 가정(아이템기반)을 했다. 이러한 가정을 토대로 사용자 사이와 영화 사이 간의 유사도를 정의하고, 협업필터링에 적용했을 때, 전통적인 협업필터링 기법보다 뛰어난 결과를 얻을 수 있었다.