• Title/Summary/Keyword: 아이소파라메트릭 요소

Search Result 4, Processing Time 0.019 seconds

A Fundamental Study on the Welding Deformation of Plate by Using F.E.M. (유한요소법에 의한 평판의 용접 변형에 관한 기초적 연구)

  • 방한서;고민성;방희선
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.1-6
    • /
    • 1997
  • When structures are constructed by welding, heat conduction brings welding deformation. This is accompanied by complicated mechanical phenomenon such as material nonlinear and geometric nonlinear behavior. Hitherto, the research of welding deformation has been accomplished by an analytical method and experimental data in Korea. In this paper, the computer program by F.E.M.(finite element method) which could analyze the deformation of thin plate considering phenomena(both material and geometric nonlinear behavior) has been developed and verified. The production mechanism and characteristics in the welding deformation of plate are studied by the results.

  • PDF

A Study on the Mechanical Characteristics by the Change of Bevel Angle of Welding Joint During PWHT (溶接이음부 形狀變化에 따른 後熱處理時의 力學的 特性에 關한 硏究)

  • 방한서;강성원;김기성;김종명;노찬승
    • Journal of Welding and Joining
    • /
    • v.15 no.2
    • /
    • pp.64-71
    • /
    • 1997
  • In order to define the effects on shapes of welding joint, during Post Welding Heat Treatment (PWHT), we have carried out numerical analysis on the several test pieces by using computer program which was based on thermal-elasto-plastic-creep theories for the study. And then, welding residual stresses after PWHT were measured same test-pieces to compare with the results of numerical analysis. The main results obtained from this study is as follows: 1) The distribution modes of welding residual stresses are same on the all test pieces after and during PWHT by the both sides (measurement and numerical analysis). 2) The mechanical difference for change the thickness of plate and bevel angle are not appeared. 3) In a mechanical point of view (like material quality test, welding deformation etc.), manimum bevel angle (40$^{\circ}$.) is more suitable than maximum bevel angle (70$^{\circ}$).

  • PDF

A Study on the Two Dimensional Unstationary Heat Conduction during the Welding on Thin Plate by F.E.M. (유한요소법(有限要素法)에 의한 박판용접(薄板熔接)의 2차원비정상열전도(次元非正常熱傳導) 해석(解析))

  • H.S.,Bang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.4
    • /
    • pp.43-50
    • /
    • 1990
  • For constructing the steel structures of ship and automobiles etc, thin plate welding has been extensively used in recent years. However. the welding of plate produces welding deformation and residual stress which sometimes extremely harm to the safty of structure in the course of construction and operation. Therefore, in order to accurately prediet the welding deformation and residual stress, it is important to exactly analyze the distribution of temperature during welding in thin plate and take into account the moving effect of the heat source. In this paper, two dimensional unstationary heat conduction problemes of thin plate are formulated using an isoparametric finite element. After the development of the computer program, this method is applied to some specimens, and the analyzed results are compared with the experimental ones to confirm the usefulness of this method.

  • PDF

Collision Analysis of STF Impregnated Kevlar Fabric Using the 3D-Shell Element (쉘요소를 활용한 STF 함침된 Kevlar Fabric의 방탄해석)

  • Lee, Duk-Gyu;Park, Jong-Kyu;Jung, Wui-Kyung;Lee, Man-Young;Kim, See-Jo;Moon, Sang-Ho;Son, Kwon-Joong;Cho, Hee-Keun
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.24-32
    • /
    • 2016
  • Ballistic impact analyses have been performed with the Kevlar fabric impregnated with STF(shear thickening fluid). Multi-layer laminates modeled with 3D isoparametric shell elements were used for the performance analysis and their results are compared with experimental results. Both experiments and numerical analyses have been done to verify the usefulness of STF to enhance the impact resistance performance. The results showed that STF increases friction within a bundle of fiber, and this phenomena is more apparent in the velocity range of under near 450 m/s. In this research, it is emphasized that FEA analyses of STF impregnated Kevlar fabric laminate were successfully conducted using shell elements. Moreover, the effectiveness of the technique and accuracy were verified through the comparison with reliable experimental data.