• Title/Summary/Keyword: 아세톤 레이저유도형광법

Search Result 4, Processing Time 0.023 seconds

An Experimental Investigation of Air Fuel Ratio Measurement using Laser Induced Acetone Fluorescence (아세톤 형광을 이용한 공연비 측정 기법 연구)

  • Park Seungjae;Huh Hwanil;Oh Seungmook
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.353-356
    • /
    • 2002
  • Planar laser induced fluorescence(PLIF) has been widely used to obtain two dimensional fuel distribution. Preliminary investigation was performed to measure quantitative air excess ratio distribution in an engine fueled with LPG. It is known that fluorescence signal from acetone as a fluorescent tracer is less sensitive to oxygen quenching than other dopants. Acetone was excited by KrF excimer laser (248nm) and its fluorescence image was acquired by ICCD camera with a cut-of filter to suppress Mie scattering from the laser light. For the purpose of quantifying PLIF signal, an image processing method including the correction of laser sheet beam profile was suggested. Raw images were divided by each intensity of laser energy and profile of laser sheet beam. Inhomogeneous fluorescence images scaled with the reference data, which was taken by a calibration process, were converted to air excess ratio distribution. This investigation showed instantaneous quantitative measurement of planar air excess ratio distribution for gaseous fuel.

  • PDF

Acetone PLIF for Fuel Distribution Measurements in Liquid Phase LPG Injection Engine (LPG 액상분사 엔진에서 아세톤 PLIF를 이용한 연료분포 측정기법 연구)

  • 오승묵;박승재;허환일;강건용;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.74-82
    • /
    • 2004
  • Planar laser-induced fluorescence(PLIF) has been widely used to obtain two dimensional fuel distribution. Acetone PLIF is chosen because fluorescence signal from acetone as a fluorescent tracer is less sensitive to oxygen quenching than other dopants. Acetone PLIF is applied to measure quantitative air excess ratio distribution in an engine fueled with LPG. Acetone is excited by KrF excimer laser (248nm) and its fluorescence image is acquired by ICCD camera with a cut-off filter to suppress Mie scattering from the laser light. For the purpose of quantifying PLIF signal, an image processing method including the correction of laser sheet beam profile is suggested. Raw images are divided by each intensity of laser energy and profile of laser sheet beam. Inhomogeneous fluorescence images scaled with the reference data, which is taken by a calibration process, are converted to air excess ratio distribution. This investigation shows instantaneous quantitative measurement of planar air excess ratio distribution for gaseous fuel.

Lean Burn Characteristics in a Heavy Duty Liquid Phase LPG Injection SI Engine (대형 액상분사식 LPG 엔진의 희박연소특성에 관한 연구)

  • 오승묵;김창업;강건용;우영민;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.1-11
    • /
    • 2004
  • Combustion and fuel distribution characteristics of heavy duty engine with the liquid phase LPG injection(LPLI) were studied in a single cylinder engine, Swirl ratio were varied between 1.2, 2.3, and 3.4 following Ricardo swirl number(Rs) definition, Rs=2.3 showed the best results with lower cycle-by-cycle variation and shorter burning duration in the lean region while strong swirl(Rs=3.4) made these worse for combustion enhancement. Excessive swirl resulted in reverse effects due to high heat transfer and initial flame kernel quenching. Fuel injection timings were categorized with open valve injection(OVI) and closed valve injection(CVI). Open valve injection showed shorter combustion duration and extended lean limit. The formation of rich mixture in the spark plug vicinity was achieved by open valve injection. With higher swirl strength(Rs=3.4) and open valve injection, the cloud of fuel followed the flow direction and the radial air/fuel mixing was limited by strong swirl flow. It was expected that axial stratification was maintained with open-valve injection if the radial component of the swirling motion was stronger than the axial components. The axial fuel stratification and concentration were sensitive to fuel injection timing in case of Rs=3.4 while those were relatively independent of the injection timing in case of Rs=2.3.

A Study of Flow Characteristics by Acoustic Excitation on the Laminar Non-premixed Jet Flame (층류 비예혼합 분류화염에서 음향가진에 의한 유동특성 연구)

  • Oh, Kwang-Chul;Lee, Kee-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.160-168
    • /
    • 2010
  • An experimental study has been conducted to investigate the effects of forcing amplitude on the tone-excited non-premixed jet flame of the resonance frequency. Visualization techniques are employed using the laser optic systems, which are RMS tomography, PLIF and PIV system. There are three lift-off histories according to the fuel flow rates and forcing amplitudes; the regime I always has the flame base feature like turbulent flame when the flame lift-off, while the flame easily lift-off in the regime II even if a slight forcing amplitude applied. The other is a transient regime and occurs between the regime I and regime II, which has the flame base like the bunsen flame of partial premixed flame. In the regime I and II, the characteristics of the mixing and velocity profile according to the forcing phase were investigated by the acetone PLIF, PIV system. Particular understanding is focused on the distinction of lift-off history in the regime I and II.