• Title/Summary/Keyword: 아닐린

Search Result 201, Processing Time 0.027 seconds

Synthesis of Aniline from Nitrobenzene and Fe3(CO)12 with Phase Transfer Catalysts (상 이동 촉매상에서 니트로벤젠과 Fe3(CO)12로부터 아닐린의 합성)

  • Chun, Sung-Woo;Oh, So-Young;Park, Dae-Won;Park, Sang-Wook;Shin, Jung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.288-295
    • /
    • 1992
  • The reduction of nitrobenzene by triirondodecacarbonyl over phase transfer catalysts was investigated. The phase transfer catalysts showed a good yield of aniline at room temperature. Benzyltriethylammonium chloride, tricaprylmethyl ammonium chloride, 18-crown-6 and polyethyleneglycol-400 were good phase transfer catalysts in this reaction. The effect of reaction temperature, concentration of sodium hydroxide and organic solvents on the reaction rate and yield of aniline were studied in this work.

  • PDF

Preparation and Characterization of Organic Thin-Film Transparent Electrode using Conducting Polyaniline (전도성 폴리아닐린을 이용한 유기박막 투명전극의 제조 및 특성)

  • Oh, Sun-Joo;Lee, Ue-Jin;Yoon, Jong-Jin;Jung, Myung-Jo;Lee, Suck-Hyun;Lee, Sang-Ho;Cha, E.H.;Lee, Jae-Kwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.3
    • /
    • pp.175-180
    • /
    • 2010
  • The highly conductive polyaniline was synthesized and investigated on the properties of its thin film electrode fabricated by solution process. The transmittance and sheet resistance of the polyaniline thin film of 200 nm thickness were observed in 85% in absorption range above 450 nm and $380P{\Omega}/{\Box}$, respectively. The sheet resistance of the polyaniline was largely varied above $130^{\circ}C$ annealing temperature.

hermodynamic Study on the Solubilization of Aniline by Cationic Surfactants (DTAB, TTAB, and CTAB) (양이온성 계면활성제 (DTAB, TTAB 및 CTAB)에 의한 아닐린의 가용화에 대한 열역학적 고찰)

  • Lee, Dong-Cheol;Lee, Byung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1143-1152
    • /
    • 2019
  • In order to study the solubilization of aniline by cationic surfactants (DTAB, TTAB and CTAB), the solubilization constant (Ks) and thermodynamic functions were measured and calculated by using the UV-Vis method. The solubilization constants of aniline with the change of temperature were measured, and the effects of addition of ionic salts and organics on the solubilization constants were investigated. These effects of additives and temperature changes were compared and analyzed for each type of surfactant, and the solubilization of aniline was analyzed microscopically by comparing and evaluating the thermodynamic functions obtained from the solubilization constants. As a result, the Gibbs free energy and enthalpy changes were both negative and the entropy changes were positive within the measured range for the solubilization of aniline by cationic surfactants. The solubilization constant value decreased with increasing temperature and increased with increasing carbon chain length of the surfactant. As the concentration of ionic salts increased, the Gibbs free energy change increased at first and then decreased. In n-butanol solution, the Gibbs free energy change tended to increase continuously with increasing the concentration of n-butanol.

Fabrication and Characterization of UV-curable Conductive Transparent Film with Polyaniline Nanofibers (폴리아닐린 나노섬유를 이용한 광경화형 전도성 투명필름의 제조 및 특성)

  • Kim, Sung-Hyun;Song, Ki-Gook
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.531-535
    • /
    • 2012
  • Conductive polyaniline (PANI) nanofibers in UV-curable resin were used for a transparent conductive film. The emeraldine-salt PANI (ES-PANI) nanofibers were prepared by chemical oxidation polymerization of aniline, which could be changed into emeraldine-base PANI by dedoping. EB-PANI nanofibers as a precursor for conductive fillers were thereby transformed into re-dpoed PANI (rES-PANI) by dodecylbenzenesulfonic acid in the UV-curable resin solution. rES-PANI nanofibers have high conductivity and long-term stability in the solution without a defect of nanostructure. The resulting conductive resin solution was proved to be highly stable where no precipitation of rES-PANI fillers was observed over a period of 3 months. The transparent film was spin-casted on a poly(methyl methacrylate) sheet of thickness ca. $5{\mu}m$. A surface resistance of $6.5{\times}10^8{\Omega}/sq$ and transmittance at 550 nm of 91.1% were obtained for the film prepared with a concentration of 1.4 wt% rES-PANI nanofibers in the solution. This transformation process of rES-PANI from ES-PANI by dedoping-redoping can be an alternative method for the preparation of an antistatic protection film with controllable surface resistance and optical transparencies with the PANI concentration in UV-curable solution.

Analysis for Adsorption Equilibrium, Kinetic and Thermodynamic Parameters of Aniline Blue Using Activated Carbon (활성탄을 이용한 아닐린 블루의 흡착평형, 동역학 및 열역학 파라미터에 대한 해석)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.679-686
    • /
    • 2019
  • Characteristics of adsorption equilibrium, kinetic and thermodynamic of aniline blue onto activated carbon from aqueous solution were investigated as function of initial concentration, contact time and temperature. Adsorption isotherm of aniline blue was analyzed by Langmuir, Freundlich, Redlich-Peterson, Temkin and Dubinin-Radushkevich models. Langmuir isotherm model fit better with isothermal data than other isotherm models. Estmated Langmuir separation factors ($R_L=0.036{\sim}0.068$) indicated that adsorption process of aniline blue by activated carbon could be an effective treatment method. Adsorption kinetic data were fitted to pseudo first order model, pseudo second order model and intraparticle diffusion models. The kinetic results showed that the adsorption of aniline blue onto activated carbon well followed pseudo second-order model. Adsorption mechanism was evaluated in two steps, film diffusion and intraparticle diffusion, by intraparticle diffusion model. Thermodynamic parameters such as Gibbs free energy, enthalpy and entropy for adsorption process were estimated. Enthalpy change (48.49 kJ/mol) indicated that this adsorption process was physical adsorption and endothermic. Since Gibbs free energy decreased with increasing temperature, the adsorption reaction became more spontaneously with increasing temperature. The isosteric heat of adsorption indicated that there is interaction between the adsorbent and the adsorbate because the energy heterogeneity of the adsorbent surface.

Control of Chlorinated Volatile Pollutants at Indoor Air Levels Using Polymer-based Photocatalyst, Composite

  • Kim, Byeong-Chan;Kim, Hye-Jin;Kim, Ji-Eun;Park, Eun-Ju;Noh, Ji-Sun;Kang, Hyun-Jung;Shin, Seung-Ho;Jo, Wan-Kuen
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.105-112
    • /
    • 2013
  • In this study, polyaniline (PANI)-based $TiO_2$ (PANI-$TiO_2$) composites calcined at different temperatures were prepared and their applications for control of trichloroethylene (TCE) and tetrachloroethylene (TTCE) at indoor air levels were investigated. For these target compounds, the photocatalytic control efficiencies of PANI-$TiO_2$ composites did not exhibit any trend with varying calcination temperatures (CTs). Rather, the average control efficiencies of PANI-$TiO_2$ composites over 3-h photocatalytic process increased from 61 to 72% and from 21 to 39% for TCE and TTCE, respectively, as the CT increased from 350 to $450^{\circ}C$. However, for both the target compounds, the average control efficiencies of PANI-$TiO_2$ composites decreased gradually as the CT increased further to 550 and $650^{\circ}C$. These results were ascribed to contents of anatase crystal phase and specific surface area of different particle sizes in the PANI-$TiO_2$ composites, which were demonstrated by the X-ray diffraction and scanning electron microscopy images, respectively. At the lowest input concentration (IC, 0.1 ppm), average control efficiencies of TCE and TTCE were 72 and 39%, respectively, whereas at the highest IC (1.0 ppm) they were 52 and 18%, respectively. As stream flow rate increased from 0.1 to 1.0 L $min^{-1}$, the average control efficiencies of TCE and TTCE decreased from ca. 100 to 47% and ca. 100 to 18%, respectively. In addition, the average control efficiencies of TCE and TTCE decreased from ca. 100 to 23% and ca. 100 to 8%, respectively as the relative humidity increased from 20 to 95%. Overall, these findings indicated that as-prepared PANI-$TiO_2$ composites could be used efficiently for control of chlorinated compounds at indoor air levels;if operational conditions were optimized.