• Title/Summary/Keyword: 아나톡신-a

Search Result 3, Processing Time 0.02 seconds

Analysis of anatoxin-a in aqueous and cyanobacterial samples from korean lakes by liquid chromatography with fluorescence detection (액체크로마토그래피-형광검출법에 의한 호소시료의 아나톡신-a 분석)

  • Lee, In-Jung;Lee, Chul-Gu;Heo, Seong-Nam;Lee, Jae-Gwan
    • Analytical Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.225-230
    • /
    • 2011
  • Anatoxin-a is a cyanobacterial neurotoxin with a high toxicity produced by Anabaena, Aphanizomenon and Oscillatoria. Water bloom, formed by Anabaena has been occurring frequently in Lake Yeongchun. It is need to develop a sensitive method for determination of anatoxin-a to control potential hazard in raw water resources. In this study, we developed a highly sensitive analytical method of anatoxin-a using solid phase extraction (SPE) and high performance liquid chromatography (HPLC) with fluorescence detection. Anatoxin-a was converted into a highly fluorescent derivative using 4-fuoro-7-nitro-2,1,3-benzoxadiazole (NBF-F). The method was evaluated in terms of linearity of calibration curve, recovery and repeatability, and the adequate values were obtained. The method detection limit was $0.034\;{\mu}g/g$ and $0.022\;{\mu}g/L$ for algal and water samples, respectively. The concentrations of anatoxin-a were measured in algal and water samples from Lake Andong, Yeongchun and Daechung and ranged from $0.135\;{\mu}g/g$ to $10.979\;{\mu}g/g$ in algal samples and not detected in water samples.

Decomposition of Aqueous Anatoxin-a Using Underwater Dielectric Barrier Discharge Plasma Created in a Porous Ceramic Tube (다공성 세라믹관내에서 생성되는 수중 유전체 장벽 방전 플라즈마를 이용한 아나톡신-a의 분해)

  • JO, Jin-Oh;Jwa, Eunjin;Mok, Young-Sun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.2
    • /
    • pp.167-177
    • /
    • 2016
  • This work investigated the decomposition of aqueous anatoxin-a originated from cyanobacteria using an underwater dielectric barrier discharge plasma system based on a porous ceramic tube and an alternating current (AC) high voltage. Plasmatic gas generated inside the porous ceramic tube was uniformly dispersed in the form of numerous bubbles into the aqueous solution through the micro-pores of the ceramic tube, which allowed an effective contact between the plasmatic gas and the aqueous anatoxin-a solution. Effect of applied voltage, treatment time and the coexistence of nutrients such as $NO_3{^-}$, $H_2PO_4{^-}$ and glucose on the decomposition of anatoxin-a was examined. Chemical analyses of the plasma-treated anatoxin-a solution using liquid chromatography-mass spectrometry (LC-MS) and ion chromatography (IC) were performed to elucidate the mineralization mechanisms. Increasing the voltage improved the anatoxin-a decomposition efficiency due to the increased discharge power, but the energy required to remove a given amount of anatoxin-a was similar, regardless of the voltage. At an applied voltage of 17.2 kV (oxygen flow rate: $1.0L\;min^{-1}$), anatoxin-a at an initial concentration of $1mg\;L^{-1}$ (volume: 0.5 L) was successfully treated within 3 min. The chemical analyses using LC-MS and IC suggested that the intermediates with molecular weights of 123~161 produced by the attack of plasma-induced reactive species on anatoxin-a molecule were further oxidized to stable compounds such as acetic acid, formic acid and oxalic acid.

Disinfection of E.coli in Drinking Water by TiO2 Photocatalytic System (TiO2 광촉매 시스템을 이용한 음용수 중의 대장균 살균연구)

  • Jung, Jin-Ah;Kwak, Do Hwan;Oh, Dae Woong;Park, Dong Min;Yang, O-Bong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.11-17
    • /
    • 2012
  • Disinfection of Escherichia coli (E. coli) in drinking water was investigated by using $TiO_2$ and $TiO_2-SiO_2$ based photocatalyst prepared by sol-gel method. The disinfection test was carried out in an annular flow reactor with circulating sterile water containing the photocatalysts powder under UV-A irradiation. The disinfection activity was proportional to the anatase`s intensity of crystalline peak of the $TiO_2$ photocatalysts. 100% disinfection of E.coli without endotoxin was achieved with $TiO_2$ coated photocatalytic system under UV-A irradiation within 2 h. However, toxic endotoxine was exist in the disinfection of E.colithe under UV-C irradiation even though 100% disinfection of E.colithe within 30 min, which suggest that $TiO_2$ coated photocatalytic system with UV-A is useful tool for the disinfection of E.coli in drinking water.