• Title/Summary/Keyword: 쓰기 전용 캐시

Search Result 2, Processing Time 0.016 seconds

Analysis and Advice on Cache Algorithms of SSD FTL (SSD FTL 캐시 알고리즘 분석 및 제언)

  • Hyung Bong, Lee;Tae Yun, Chung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • It is impossible to overwrite on an already allocated page in SSDs, so whenever a write operation occurs a page replacement with a clean page is required. To resolve this problem, SSDs have an internal flash translation layer called FTL that maps logical pages managed by a file system of operating system to currently allocated physical pages. SSD pages discarded due to write operations must be recycled through initialization, but since the number of initialization times is limited the FTL provides a caching function to reduce the number of writes in addition to the page mapping function, which is a core function. In this study, we focus on the FTL cache methodologies reducing the number of page writes and analyze the related algorithms, and propose a write-only cache strategy. As a result of experimenting with the write-only cache using a simulator, it showed an improvement of up to 29%.

SSD Caching for Improving Performance of Virtualized IoT Gateway (가상화 환경 IoT 게이트웨이의 성능 향상을 위한 SSD 캐시 기법)

  • Lee, Dongwoo;Eom, Young Ik
    • Journal of KIISE
    • /
    • v.42 no.8
    • /
    • pp.954-960
    • /
    • 2015
  • It is important to improve the performance of storage in the home cloud environment within the virtualized IoT gateway since the performance of applications deeply depends on storage. Though SSD caching is applied in order to improve the storage, it is only used for read-cache due to the limitations of SSD such as poor write performance and small write endurance. However, it is important to improve performance of the write operation in the home cloud server, in order to improve the end-user experience. This paper propose a novel SSD caching which considers write-data as well as read-data. We validate the enhancement in the performance of random-write by transforming it to the sequential patterns.