• Title/Summary/Keyword: 심해저퇴적물

Search Result 41, Processing Time 0.025 seconds

Macrozoobenthic Communities of the Deep Sea Sediments in the Northeastern Pacific Ocean (북동태평양 심해저 퇴적물에 서식하는 대형저서동물의 군집)

  • Choi, Jin-Woo;Kim, Dong-Sung;Hyun, Jung-Ho;Lee, Chang-Hoon
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.367-376
    • /
    • 2004
  • Macrobenthos were collected at 7 stations located from $5^{\circ}N$ to $10^{\circ}N$ with 1o interval along the longitude of $131^{\circ}W$ using a box corer with sampling area of $0.25\;m^2$ in July, 1999. In order to see the vertical distribution of macrobenthos in sediments, each subcore sample was divided into 5 layers with 1 cm interval up to 6 cm depth. Each subcore sample was sieved through 0.3 mm mesh screen and fixed with 10% Rose Bengal added formalin. A total of 22 faunal groups in 11 phyla were sampled and the average density was $959\;{\pm}\;584\;ind./m^2$. Foraminiferans comprised 34.8% of total specimens were the most abundant fauna, and followed by nematodes (27.5%), polychaete worms (15.7%), and benthic harpactoid copepods (10.4%). A latitudinal trend was shown in the distribution of macrobenthos; the maximum density of $1,832\;ind./m^2$ appeared at station N06 and the most poverished community occurred at station N09 with the density of $248\;ind./m^2$. The density of typical macrofaunal taxa except foraminiferans and nematods was $116\;ind./m^2$. In the vertical distribution of macrobenthos, more than 70% of macrobenthos occurred in the upper 2 cm layer, and upper 4 cm layer contained about 90% of macrofauna. Polychaete worms consisted of 22 families, and cirratulid and paraonid worms were dominant polychaete species. The prominant feeding guilds of polychaete worms were SDT (surface, descretely motile, tenaculate feeding) and SMX (surface, motile, non-jawed); they comprised more than 50% of polychaete abundance. These feeding guilds of polychaete worms suggests that the deep sea benthos should be well adapted the newly settled deposits from water column, but this should be clarified by the further studies.

Uranium-Series Growth Rates of Two Manganese Nodules from the KODOS-89 site, Clarion-Clipperton Fracture Zones of the Central Equatorial Pacific (우라늄 계열 기법으로 측정된 클라리온-클리퍼톤 균열대 KODOS-89 지역 망간단괴 2개의 성장속도)

  • MOON, DEOK SOO;KIM, KEE HYUN;KANG, JUNG KEUK
    • 한국해양학회지
    • /
    • v.29 no.3
    • /
    • pp.248-257
    • /
    • 1994
  • Growth rates of two manganese nodules collected in the Korea Deep Ocean Study (KODOS-89) site in the Clarion-Clipperton Fracture Zones in the central Equatorial Pacific have been estimated by employing uranium-series disequilibrium techniques to investigate the geochemical processes leading to the formation of deep-sea nodules. the growth rates estimated from the profiles of excess /SUP 230/Th activities and ratios of excess /SUP 230/Th to /SUP 232/Th to /SUP 232/Th are in the order of a few millimeters per million years. Growth rates at bottom-side of nodules are 2-3 times faster than those at top-sides. Diagenetic supply of manganese could explain the faster growth at the bottom-side of nodules.

  • PDF

Measurements of Dissociation Enthalpy for Simple Gas Hydrates Using High Pressure Differential Scanning Calorimetry (고압 시차 주사 열량계를 이용한 단일 객체 가스 하이드레이트의 해리 엔탈피 측정)

  • Lee, Seungmin;Park, Sungwon;Lee, Youngjun;Kim, Yunju;Lee, Ju Dong;Lee, Jaehyoung;Seo, Yongwon
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.666-671
    • /
    • 2012
  • Gas hydrates are inclusion compounds formed when small-sized guest molecules are incorporated into the well defined cages made up of hydrogen bonded water molecules. Since large masses of natural gas hydrates exist in permafrost regions or beneath deep oceans, these naturally occurring gas hydrates in the earth containing mostly $CH_4$ are regarded as future energy resources. The heat of dissociation is one of the most important thermal properties in exploiting natural gas hydrates. The accurate and direct method to measure the dissociation enthalpies of gas hydrates is to use a calorimeter. In this study, the high pressure micro DSC (Differential Scanning Calorimeter) was used to measure the dissociation enthalpies of methane, ethane, and propane hydrates. The accuracy and repeatability of the data obtained from the DSC was confirmed by measuring the dissociation enthalpy of ice. The dissociation enthalpies of methane, ethane, and propane hydrates were found to be 54.2, 73.8, and 127.7 kJ/mol-gas, respectively. For each gas hydrate, at given pressures the dissociation temperatures which were obtained in the process of enthalpy measurement were compared with three-phase (hydrate (H) - liquid water (Lw) - vapor (V)) equilibrium data in the literature and found to be in good agreement with literature values.

Potential Meso-scale Coupling of Benthic-Pelagic Production in the Northeast Equatorial Pacific (북동 적도 태평양에서 수층 기초 생산력과 심해저 퇴적물내 미생물 생산력과의 상관성)

  • Kim, Kyeong-Hong;Son, Ju-Won;Son, Seung-Kyu;Chi, Sang-Bum;Hyun, Jung-Ho
    • Ocean and Polar Research
    • /
    • v.33 no.1
    • /
    • pp.21-34
    • /
    • 2011
  • We determined potential meso-scale benthic-pelagic ecosystem coupling in the north equatorial Pacific by comparing surface chl-a concentration with sediment bacterial abundance and adenosine triphosphate (ATP) concentration (indication of active biomass). Water and sediment samples were latitudinally collected between 5 and $11^{\circ}N$ along $131.5^{\circ}W$. Physical water properties of this area are characterized with three major currents: North Equatorial Current (NEC), North Equatorial Count Current (NECC), and South Equatorial Current (SEC). The divergence and convergence of the surface water occur at the boundaries where these currents anti-flow. This low latitude area ($5{\sim}7^{\circ}N$) appears to show high pelagic productivity (mean phytoplankton biomass=$1266.0\;mgC\;m^{-2}$) due to the supplement of high nutrients from nutrient-enriched deep-water via vertical mixing. But the high latitude area ($9{\sim}11^{\circ}N$) with the strong stratification exhibits low surface productivity (mean phytoplankton biomass=$603.1\;mgC\;m^{-2}$). Bacterial cell number (BCN) and ATP appeared to be the highest at the superficial layer and reduced with depth of sediment. Latitudinally, sediment BCN from low latitude ($5{\sim}7^{\circ}N$) was $9.8{\times}10^8\;cells\;cm^{-2}$, which appeared to be 3-times higher than that from high latitude ($9{\sim}11^{\circ}N$; $2.9{\times}10^8\;cells\;cm^{-2}$). Furthermore, sedimentary ATP at the low latitude ($56.2\;ng\;cm^{-2}$) appeared to be much higher than that of the high latitude ($3.3\;ng\;cm^{-2}$). According to regression analysis of these data, more than 85% of the spatial variation of benthic microbial biomass was significantly explained by the phytoplankton biomass in surface water. Therefore, the results of this study suggest that benthic productivity in this area is strongly coupled with pelagic productivity.

Paleo-latitude of the Intertropical Convergence Zone in the Northeast Pacific during Late Cenozoic (신생대 후기 북동태평양 지역 적도수렴대의 위치변화)

  • Hyeong, Ki-Seong;Kim, Ki-Hyune;Chi, Sang-Bum;Yoo, Chan-Min
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.245-253
    • /
    • 2004
  • The Intertropical Convergence Zone (ITCZ), where the southeast and northeast trade winds converge, is the effective climatological barrier that separates the southern and northern hemispheres in dust budget. Asian and N. American dusts dominate in fhe Pacific north of the ITCZ, while Central and S. American dust prevails south of the ITCZ. In order to understand the nature of latitudinal and depth-related variations of mineral composition in terms of relative position to the ITCZ, deep-sea core sediments were collected from $9^{\circ}N$ to $17^{\circ}N$ at a $2^{\circ}N$ interval along the $131.5^{\circ}W$ meridian and analyzed for mineral composition. The amount of illite in surface sediments decreases gradually from 65% at $17^{\circ}N\;to\;31^{\circ}N$ to 31% at 9f. In contrast, smectite increases from 11% to 56% southward. The observed mineralogical variation toward the ITCZ is attributed to the increased supply of volcaniclastic material transported via the southeast trade winds from the Central and South America source regions. Smectite-illite transition, a phenomenon that the amount of smectite increases over illite, occurs at around $10^{\circ}N$, the northern margin of the ITCZ. This result indicates that the change in latitudinal position of the ITCZ in geologic past could be recorded as a form of smectite-illite transition in deep-sea cores. The studied cores show down-core variation of mineral composition from illite-rich at the surface to smectite-rich clay suit at depths, similar to the latitudinal variation. The smectite-illite transitions observed in these cores are likely the records of changes in latitudinal position of the ITCZ. The depth and age of smectite-illite transition is getting shallower and younger toward equator, implying that the ITCZ was located farther north during late Tertiary and has shifted southward to the present position of $5^{\circ}N-10^{\circ}N$.

Application of an XRD-Pattern Calculation Method to Quantitative Analysis of Clay Minerals (X-선 회절도형 계산방법을 이용한 점토광물의 정량분석)

  • Ahn, Jung-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.32-41
    • /
    • 1992
  • An XRD quantitative analytical method using calculated XRD patterns was discussed in this study, Deep-seabed sediments commonly contain smectite, illite, chlorite, and kaolinite, and XRD pattern of each clay mineral of appropriate chemical composition was simulated by using an XRD pattern calculation method. Theoretical peak intensities of specific reflections of four clay minerals (the 001 reflections of smectite and illite, the 004 reflection of chlorite, and the 002 reflection of kaolinite) were measured from calculated patterns, and MIF(mineral intensity factor)value of each phase was determined from the intensities of calculated patterns. The peak intensities obtaine from experimental XRD patterns of sediments were corrected using the MIF values so that the calibrated intensity values for the specimens are linearly proportional to the weight fraction of each phase, which is normalized to 100 wt%. The MIF method can provide accurate quantitaive results without the necessity of correcting the factors by the mass absorption coefficient of each phase. This method excludes the necessity of standard specimens having compositions that are similar to those of clay minerals in the sediment samples. Therefore, quantitaive analysis using XRD calculation method can be utilized for the specimens, for which the standard specimens are very difficult or impossible to obtain. this quantitative method can provide rapid, routine analysis results for a large number of samples which occur in similar geological environments.

  • PDF

Authigenic Phillipsite in Deep-sea Manganese Nodules from the Clarion-Clipperton Fracture Zones, NE Equatorial Pacific (적도 북동 태평양, 클라리온-클리퍼톤 균열대에서 산출되는 망간단괴내의 자생 필립사이트)

  • Lee, Chan Hee;Lee, Sung-Rock
    • Economic and Environmental Geology
    • /
    • v.29 no.4
    • /
    • pp.421-428
    • /
    • 1996
  • The occurrence, optical property, chemical composition, crystal structure and formation environments of the phillipsite within deep-sea manganese nodules were systematically investigated in this study. Phillipsite in manganese nodules occurs in nucleus of nodules along with consolidated bottom sediments, weathered volcanic debris, and interstitial grains in the each layer of manganese encrusts. Phillipsite is predominantly pseudomorphs of volcanic shards, and occurs as white to pale yellow in color lath-shaped and equant crystals. These show aggregations of prismatic, blocky, and bladed of 2 to $20{\mu}m$ long, and 2 to $5{\mu}m$ thick. The simplified average chemical formula of phillipsite is $({Ca_{0.1}Mg_{0.3}Na_{1.1}K_{1.5}})_3{(Fe_{0.3}Al_{4.2}Si_{11.8})O_{32}{\cdot}10H_2O}$ with a very siliceous and alkalic. The $Si/(Al+Fe^{+3})$ ratio is 2.37 to 2.78 and alkalis greatly exceed the divalent exchangeable cations, and Na/K ratio is 0.59 to 0.81. The phillipsite is monoclinic ($P2_l/m$) with the unit-cell parameters, $a=10.005{\AA}$, $b=14.129{\AA}$, $c=8.686{\AA}$, ${\beta}=124.35^{\circ}$, and $V=1013.6{\AA}^3$. Phillipsites in manganese nodules formed apparently authigenically at a temperature less than $10^{\circ}C$, and they crystallized at a pressure of less than 0.7 kb, and pH of about 8 in deep-sea environments.

  • PDF

Fifty Years of Scientific Ocean Drilling (1968-2018): Achievements and Future Direction of K-IODP (해양 과학시추 50년 (1968-2018): 한국의 성과 및 미래 방향)

  • KIM, GIL YOUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.30-48
    • /
    • 2019
  • The year 2018 is the $50^{th}$ anniversary of scientific ocean drilling. Nevertheless, we know more about the surface of the moon than the Earth's ocean floor. In other words, there are still no much informations about the Earth interior. Much of what we do know has come from the scientific ocean drilling, providing the systematic collection of core samples from the deep seabed. This revolutionary process began 50 years ago, when the drilling vessel Glomar Challenger sailed into the Gulf of Mexico on August 11, 1968 on the first expedition of the federally funded Deep Sea Drilling Project (DSDP). DSDP followed successively by Ocean Drilling Program (ODP), Integrated Ocean Drilling Program (old IODP), and International Ocean Discovery Program (new IODP). Concerning on the results of scientific ocean drilling, there are two technological innovations and various scientific research results. The one is a dynamic positioning system, enables the drilling vessel to stay fixed in place while drilling and recovering cores in the deep water. Another is the finding of re-entry cone to replace drill bit during the drilling. In addition to technological innovation, there are important scientific results such as confirmation of plate tectonics, reconstruction of earth's history, and finding of life within sediments. New IODP has begun in October, 2013 and will continue till 2023. IODP member countries are preparing for the IODP science plan beyond 2023 and future 50 years of scientific ocean drilling. We as IODP member also need to participate in keeping with the international trend.

A Study on the Distributional Characteristics of Unminable Manganese Nodule Area from the Investigation of Seafloor Photographs (해저면 영상 관찰을 통한 망간단괴 채광 장애지역 분포 특성 연구)

  • Kim, Hyun-Sub;Jung, Mee-Sook;Park, Cheong-Kee;Ko, Young-Tak
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.3
    • /
    • pp.173-182
    • /
    • 2007
  • It is well known that manganese nodules enriched with valuable metals are abundantly distributed in the abyssal plain area in the Clarion-Clipperton (C-C) fracture zone of the northeast Pacific. Previous studies using deep-sea camera (DSC) system reported different observations about the relation of seafloor topographic change and nodule abundance, and they were sometimes contradictory. Moreover, proper foundation on the estimation of DSC underwater position, was not introduced clearly. The variability of the mining condition of manganese nodule according to seafloor topography was examined in the Korea Deep Ocean Study (KODOS) area, located in the C-C zone. In this paper, it is suggested that the utilization of deep towing system such as DSC is very useful approach to whom are interested in analysing the distributional characteristics of manganese nodule filed and in selecting promising minable area. To this purpose, nodule abundance and detailed bathymetry were acquired using deep-sea camera system and multi-beam echo sounder, respectively on the seamount free abyssal hill area of southern part ($132^{\circ}10'W$, $9^{\circ}45'N$) in KODOS regime. Some reasonable assumptions were introduced to enhance the accuracy of estimated DSC sampling position. The accuracy in the result of estimated underwater position was verified indirectly through the comparison of measured abundances on the crossing point of neighboring DSC tracks. From the recorded seafloor images, not only nodules and sediments but cracks and cliffs could be also found frequently. The positions of these probable unminable area were calculated by use of the recorded time being encountered with them from the seafloor images of DSC. The results suggest that the unminable areas are mostly distributed on the slope sides and hill tops, where nodule collector can not travel over.

Characteristics of Non-Spherical Manganese Nodule from the East Siberian Sea (동시베리아해 비구형 망가니즈단괴의 특성)

  • Koo, HyoJin;Park, MuSeong;Seo, ChoongMan;Cho, HyenGoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.4
    • /
    • pp.241-253
    • /
    • 2021
  • Manganese nodules have been found in the shallow water depth of the Arctic Ocean as well as in the abyssal plains of the Pacific and Indian Oceans, but detailed study for them were rarely investigated. Manganese nodules, collected from the East Siberian Sea through the Arctic Expedition using Araon ice braking vessel, have a high potential for Mn mineral resources because they have high Mn content with high Mn/Fe ratio. This study investigated the external form, size and weight, internal texture for the non-spherical manganese nodule, which has about 7 % of total nodule from the East Siberian Sea. This study also researched the relative Mn-oxide mineral composition using the peak area ratio of X-ray diffraction pattern and their chemical composition. All data obtained from non-spherical nodules were compared with the spherical ones. Ellipsoidal, platy and irregular types are common among 5 groups of non-spherical manganese nodule based on the external form, and major axis and weight have positive relationship. All non-spherical manganese nodules have core mainly composed of mud sediments. The average Mn oxide mineral contents in nodules are birnessite, buserite and todorokite in descending order. Although mineral composition does not show any correlation with the external form, kind of core or internal structure, todorokite and buserite contents tend to increase and birnessite content decrease from the surface to the core in the nodule. Non-spherical manganese nodules have higher Mn content and Mn/Fe ratio than those from the shallow water depth of the Arctic Sea and even in the deep-sea of the Pacific and Indian Ocean. Although non-spherical nodule is larger and heavier, and has lower Mn content and Mn/Fe ratio than spherical nodule, there are not any differences in mineral composition and internal structure between them. Almost all manganese nodules collected from the East Siberian Sea are attributed to diagenetic process, because they are higher than 5 in Mn/Fe ratio.