• Title/Summary/Keyword: 심층혼합처리공법

Search Result 40, Processing Time 0.023 seconds

A Comparative Study of Structural Analysis on DCM Improved by Pile and Block Type (말뚝식과 블록식이 혼합된 시멘트혼합처리공법(DCM)의 구조체 해석 비교 연구)

  • Shin, Hyun Young;Kim, Byung Il;Kim, Kyoung O;Han, Sang Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.5-19
    • /
    • 2014
  • In this study, the structural analysis is performed on the method of shallow block and deep cement mixing pile, and then their characteristics and associated behaviors were analyzed. In the case of continuous beam analysis, the predicted settlement was very small, and shear force and bending stress are somewhat overestimated. The frame method is similar to numerical analysis in the internal force shallow block and long pile, but because the settlement of pile is underestimated, the additional calculation using the reaction of the long pile is necessary. For soil arching method and piled raft foundation method, the excessive axial force of long pile was predicted because the load sharing of pile is very large compared to the other methods. In the behavior of the shallow block and deep pile method, the settlement of shallow block and contact pressure are much in the center than the edge. In the estimating method considering the interaction between improved material and ground, the load sharing of the soil-cement pile ranges from 20% to 45%, and the stress ratio is 2.0~5.0 less than piled DCM. The maximum member forces at the boundary conditions of pile head are similar, but in fixed head the axial force and vertical displacement are different in accordance with pile arrangement.

Estimation of Allowable Bearing Capacity and Settlement of Deep Cement Mixing Method for Reinforcing the Greenhouse Foundation on Reclaimed Land (간척지 온실기초 보강을 위한 심층혼합처리공법의 허용지내력 및 침하량 산정)

  • Lee, Haksung;Kang, Bang Hun;Lee, Kwang-seung;Lee, Su Hwan
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.287-294
    • /
    • 2021
  • In order to expand facility agriculture and reduce greenhouse construction costs in reclaimed land, a greenhouse foundation method that satisfies economic feasibility and structural safety at the same time is required. As an alternative, the allowable bearing capacity and settlement were reviewed when the DCM(Deep cement mixing) method was applied among the soft ground reinforcement methods. To examine the applicability of the greenhouse foundation, the allowable bearing capacity and settlement were calculated by applying the theory of Terzaghi, Meyerhof, Hansen, and Schmertmann. In case of the diameter of 800mm and the width and length of the foundation of 4m, the allowable bearing capacity was 179kN/m2 and the settlement was 7.25mm, which satisfies the required bearing capacity and settlement standards. The calculation results were verified through FEM(Finite element method) analysis using the Mohr-Coulomb material model. The allowable bearing capacity was 169kN/m2 and the settlement was 2.52mm. The bearing capacity showed an error of 5.6% compared to calculated value, and the settlement showed and error of 65.4%. Through theoretical calculations and FEM analysis, it was confirmed that the allowable bearing capacity and settlement satisfies the design criteria as a greenhouse foundation when the width and length of the foundation were 4m. Based on the verified design values, it is expected to be able to present the foundation design criteria for greenhouses through empirical tests such as bearing capacity tests and long-term settlement monitoring.

Stabilizing Capability of Oyster Shell Binder for Soft Ground Treatment (표층/심층혼합처리용 굴패각 고화재의 고화성능 평가)

  • Yoon, Gil-Lim;Kim, Byung-Tak
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.143-149
    • /
    • 2006
  • An experimental study was carried out to investigate the stabilizing capability of oyster shell binder, which was developed using waste oyster shell inducing environmental pollutions by piling up out at the open or the temporary reclamation. The purpose of this paper is to compare stabilinzing capability of oyster shell binder and cement binder with treated soils. For this, a series of compressive laboratory tests were peformed to evaluate strength characteristics of treated soils by both oyster shell binder and cement binder with varing water content of dredged soils, different mixing rates of binder and curing days. Based on test results, eco-friendly binder manufactured by oyster shells showed more stabilizing capacity than cement binder and is estimated as good resource materials for soft soil improvements.

The Case Study on the Design, Construction, Quality Control of Deep Cement Mixing Method (심층혼합처리공법(DCM)의 설계, 시공 및 품질관리 사례 연구)

  • Kim, Byung-Il;Park, Eon-Sang;Han, Sang-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.19-32
    • /
    • 2021
  • In this study, evaluation and consideration of domestic/overseas design, construction, and quality control performed by the authors on the deep cement mixing method were performed, and improvements for the development of the DCM method were suggested in the future. As a result of this study, it was found that the cross-sectional area correction for strength is required during the laboratory test of mix proportion, and caution is required because the extrapolation method may lead to different results from the actual one. Applicable design methods should be selected in consideration of both the improvement ratio and the type of improvement during design, and it was confirmed that the allowable compressive strength to which the safety factor was applied refers to the standard value for stability review and not the design parameters. In the case of the stress concentration ratio, rather than applying a conventional value, it was possible to perform economical design by calculating the experimental and theoretical stress concentration ratio reflecting the design conditions. In the case where pre-boring is expected during construction, if the increased water content is not large compared to the original, there were cases where a major problem did not occur even if the result that did not consider the increase in water content was used. In addition, it was confirmed that when the ratio of the top treatment length to the improved length is high, a small amount of design cement contents per unit length can be injected during construction. In the case of quality control, it was evaluated that D/4~2D/4 for single-axis and D/4 point for multi-axis were optimal for coring of grouting mixtures. As an item for quality control, it is judged that the standard that considers the TCR along with the unconfined compressive strength of grouting mixtures is more suitable for the domestic situation.

Mechanical Characteristics of Kaolin-cement Mixture (카올린-시멘트 혼합재료의 공학적 특성)

  • Lee, Kyu-Hwan;Lee, Song;Yi, Chang-Tok
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.113-125
    • /
    • 2002
  • Ground improvement technique of cement stabilization via Deep Soil Mixing with dry cement is gaining popularity, particularly in Japan and other parts of Southeast Asia and in Scandinavia. Cement can be mixed with deep soft clay deposits, typical of marine environments, to improve the bearing capacity and/or reduce the compressibility of the material so that an otherwise poor site can be developed. However, the strength/deformation behaviour and resulting soil structure of the clay-cement mixture is presently not well understood with respect to both dry and wet mix methods. An extensive laboratory test was carried out to determine the mechanical characteristics of kaolin-cement, with some brief examination of the effects of curing environment. Laboratory tests include triaxial tests, unconfined compression tests, isotropic consolidation testis and oedometer tests. Cement contents up to 10 percent were considered and water curing was employed. Samples were cured for 7 to 112 days while submerged in distilled water. Conventional laboratory tests were also performed. In this paper, the laboratory testing program is described and various sample preparation techniques are discussed. Preliminary triaxial compression test results and trends at varying moisture contents, cement contents, confining pressures and curing times will be presented.

Applicability Evaluation of Eco-Friendly Binder Material using Desulfurized Dust in Deep Cement Mixing Method (탈황분진을 활용한 친환경 안정재의 심층혼합공법 적용성 평가)

  • Ko, Hyoung-Woo;Seo, Se-Gwan;An, Yang-Jin;Kim, You-Seong;Cho, Dae-Sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.2
    • /
    • pp.1-12
    • /
    • 2016
  • In this study, laboratory mixture design test and field test were performed to evaluate applicability of eco-friendly binder material (CMD-SOIL) using desulfurized dust in deep cement mixing method (DCM). As a result of laboratory mixture design test, the uniaxial compressive strength of CMD-SOIL was up to 1.136 times bigger than slag cement by changing the water content, mixing rate, and W/B. Also, it had shown the strength up to 1.222 times bigger in shell content and up to 1.363 times in mixing of floating soil. As a result of field test, field strength/laboratory design criterion strength ratio (${\lambda}$) is shown 0.77. And this result was similar to earlier studies. From this result, CMD-SOIL can show the same efficiency compared with existing binder.

Application for Self-Supported Retaining Wall Using Deep Cement Mixing (DCM(심층혼합처리공법)에 의한 자립식 흙막이 적용사례)

  • Jeong, Gyeong-Hwan;Kim, Yong-Wan;Shin, Min-Sik;Han, Kyoung-Tae;Kim, Tae-Hyo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.257-267
    • /
    • 2006
  • The earth retaining wall systems for excavation works in a populated urban area or a poor soil deposit can be limited due to various restriction. Thus there are various methods to be applied for them such as the soldier pile method, the diaphragm wall with counterfort and so on. In this study, the self-supported earth retaining wall using the DCM(Deep Cement Mixing) method, including its merits, demerits and some important characteristics occured in the design and the construction stage, was introduced. It might be reference for the other design and construction procedures using the DCM method.

  • PDF

Wire and Wireless Transmitting-Receiving Set for Vertical Angle and Depth Measurement of Deep Mixing Method (유무선송수신을 이용한 심층혼합처리공법 수직도 및 심도 자동측정에 관한 연구)

  • Han, Woo-Sun;Yu, Chan;Han, Man-Bok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.629-634
    • /
    • 2002
  • Demands for the automatic measurement on angle and depth of equipment were arisen for the better construction in deep mixing method and grouting method. Civil, geotechnical, electronic, and communication experts worked together for the development of automatic measuring devices using wire and wireless transmitting-receiving set. The results on the development of automatic devices in an industrial installation will be presented.

  • PDF

Characteristics of Unconfined Compressive Strength of Dredged Clay Mixed with Friendly Soil Hardening Agent (준설토와 친토양 경화재 혼합지반의 일축강도특성)

  • Oh, Sewook;Yeon, Yonghum;Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.10
    • /
    • pp.73-81
    • /
    • 2016
  • In the construction on low strength and high compressible soft ground, the many problems have been occurred in recent construction project. therefore, the soil improvement have been developed to obtain high strength in relatively short period of curing time. Based on the laboratory tests using undisturbed marine clay, the effect of improvement on soft ground was estimated. Deep mixing method by cement have been virtually used for decades to improve the mechanical properties of soft ground. However, previous researches set the focus on the short term strength the about 10% of cement treated clay. In this paper, cement and Natural Soil Stabilizer (NSS) were used as the stabilizing agent to obtain trafficability and mechanical strength of the soft clay. Based on the several laboratory tests, optimum condition was proposed to ensure the mechanical strength and compressibility as the foundation soil using cement and NSS mixed soil. Finally, research data was proposed about the applicability of NSS as the stabilizing agent to soft clay to increase the mechanical strength of soil.

Case Studies of Penetration Characteristics of DCM Wall Using Spiral Mixing Blades in Soil Layers (특수교반날개를 사용한 DCM 공법의 지반 관입 특성에 대한 사례연구)

  • Jung, Doo-Hoi;Jeong, Gyung-Hwan;Yang, Tae-Seon
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.133-140
    • /
    • 2007
  • DCM (Deep Cement Mixing Method) has been applied to build structures such as self-supported earth retaining walls. DCM columns should be penetrability into the stiff layer to assure the self-supporting ability. On the penetration increase of blade attached to the DCM mixing tools, a spiral mixing blade has been revised. Penetration characteristics of spiral blades in the stiff soil layer were evaluated through Gimhae and Incheon areas. The spiral mixing blades could penetrate into the stiff soil layers which have the N-value of greater than 30 although the penetration rate is somewhat slow. Penetration characteristics and economical efficiency should be discussed to determine the critical depth of the spiral mixing blade because the penetration efficiency can decrease in the stiff layer in this paper.