• 제목/요약/키워드: 심층인공신경망

검색결과 10건 처리시간 0.023초

광주광역시 아파트 매매가 영향요인 분석 (An Analysis of the Key Factors Affecting Apartment Sales Price in Gwangju, South Korea)

  • 임성연;고창완;정영선
    • 스마트미디어저널
    • /
    • 제11권3호
    • /
    • pp.62-73
    • /
    • 2022
  • 국내 아파트 매매가 예측에 관한 연구는 현재까지 지속적으로 수행되어 왔지만, 아파트 가격은 다양한 특성이 복합적으로 작용하기 때문에 예측하는데 어려움을 겪고 있다. 아파트 매매가를 예측하는데 앞서 정확도를 높이기 위해서는 주요 변수 선정 및 영향요인 분석이 무엇보다 중요하다. 이에 본 연구는 현재 꾸준한 상승률을 보이는 광주광역시를 대상으로 아파트 매매가에 영향을 주는 요인을 분석해보고자 한다. 이를 위해 6년간의 광주광역시 아파트 실거래가와 각종 사회적 요인 데이터를 토대로, 다중회귀분석, 랜덤 포레스트, 심층인공신경망 알고리즘을 적용하여 각 모델에서 주요 영향요인을 파악하였으며, 모델의 성능은 평균 제곱근 오차, 평균 절대 오차 그리고 결정계수를 통해 비교 분석하였다. 본 연구에서는 딥러닝의 일종인 심층인공신경망의 성능이 가장 우수함을 보였고, 매매가에 영향을 미치는 주요 요인으로 건축경과연수, 계약연도, 적용면적, 양도성예금증서, 주택담보대출금리, 선행지수, 생산자물가지수, 동행지수 등이 도출되었다.

심층인공신경망을 이용한 암반사면의 전단강도 산정 (Calculation of Shear Strength of Rock Slope Using Deep Neural Network)

  • 이자경;최주성;김태형;김종우
    • 한국지반신소재학회논문집
    • /
    • 제21권2호
    • /
    • pp.21-30
    • /
    • 2022
  • 전단강도는 암반 비탈면 안정성 평가에서 가장 중요한 지표이다. 일반적으로 기존 문헌자료, 역해석, 실험 등의 결과를 비교하여 산정한다. 암반 비탈면에서의 전단강도는 불연속면의 상태와 관련된 변수를 추가로 고려해야 한다. 이 변수들은 시추조사를 통해 여부를 파악하는 것이 어려울뿐더러 전단강도와의 정확한 관계를 찾아내기도 어렵다. 본 연구에서는 역해석을 통해 산정된 데이터를 이용했다. 기존 고려되었던 변수들의 관계를 딥러닝에 접목시켜 전단강도 산정에 적합한지 그 가능성을 모색하였다. 비교를 위해 기존에 사용되는 간단한 선형회귀(Linear Regression) 모델과 딥러닝 알고리즘인 심층인공신경망(DNN) 모델을 사용하였다. 각 분석 모델은 비슷한 예측결과를 도출해내었지만 미세한 차이로 DNN의 설명력이 개선된 결과를 나타내었다.

딥러닝의 모형과 응용사례 (Deep Learning Architectures and Applications)

  • 안성만
    • 지능정보연구
    • /
    • 제22권2호
    • /
    • pp.127-142
    • /
    • 2016
  • 딥러닝은 인공신경망(neural network)이라는 인공지능분야의 모형이 발전된 형태로서, 계층구조로 이루어진 인공신경망의 내부계층(hidden layer)이 여러 단계로 이루어진 구조이다. 딥러닝에서의 주요 모형은 합성곱신경망(convolutional neural network), 순환신경망(recurrent neural network), 그리고 심층신뢰신경망(deep belief network)의 세가지라고 할 수 있다. 그 중에서 현재 흥미로운 연구가 많이 발표되어서 관심이 집중되고 있는 모형은 지도학습(supervised learning)모형인 처음 두 개의 모형이다. 따라서 본 논문에서는 지도학습모형의 가중치를 최적화하는 기본적인 방법인 오류역전파 알고리즘을 살펴본 뒤에 합성곱신경망과 순환신경망의 구조와 응용사례 등을 살펴보고자 한다. 본문에서 다루지 않은 모형인 심층신뢰신경망은 아직까지는 합성곱신경망 이나 순환신경망보다는 상대적으로 주목을 덜 받고 있다. 그러나 심층신뢰신경망은 CNN이나 RNN과는 달리 비지도학습(unsupervised learning)모형이며, 사람이나 동물은 관찰을 통해서 스스로 학습한다는 점에서 궁극적으로는 비지도학습모형이 더 많이 연구되어야 할 주제가 될 것이다.

대화에서 멀티태스크 학습을 이용한 감정 및 화행 분류 (Emotion and Speech Act classification in Dialogue using Multitask Learning)

  • 신창욱;차정원
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.532-536
    • /
    • 2018
  • 심층인공신경망을 이용한 대화 모델링 연구가 활발하게 진행되고 있다. 본 논문에서는 대화에서 발화의 감정과 화행을 분류하기 위해 멀티태스크(multitask) 학습을 이용한 End-to-End 시스템을 제안한다. 우리는 감정과 화행을 동시에 분류하는 시스템을 개발하기 위해 멀티태스크 학습을 수행한다. 또한 불균형 범주 분류를 위해 계단식분류(cascaded classification) 구조를 사용하였다. 일상대화 데이터셋을 사용하여 실험을 수행하였고 macro average precision으로 성능을 측정하여 감정 분류 60.43%, 화행 분류 74.29%를 각각 달성하였다. 이는 baseline 모델 대비 각각 29.00%, 1.54% 향상된 성능이다. 본 논문에서는 제안하는 구조를 이용하여, 발화의 감정 및 화행 분류가 End-to-End 방식으로 모델링 가능함을 보였다. 그리고, 두 분류 문제를 하나의 구조로 적절히 학습하기 위한 방법과 분류 문제에서의 범주 불균형 문제를 해결하기 위한 분류 방법을 제시하였다.

  • PDF

얼굴 모델링을 위한 검색 기반 헤어 모델 증강 기법 (Retrieval-Based Hair Model Augmentation for Face Modeling)

  • 이정우;원소미;박인규
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 추계학술대회
    • /
    • pp.53-54
    • /
    • 2018
  • 주어진 영상으로부터의 3 차원 얼굴 모델링은 얼굴 분석, 애니메이션, 생체 인식 등의 많은 컴퓨터비전 및 그래픽스 응용분야에서 중요한 역할을 하고 있다. 그 중에서도 헤어 영역은 얼굴에 비해 모양의 다양성과 모델의 복잡도가 현저히 높다. 기존의 연구는 주로 얼굴 영역에 한정한 3 차원 얼굴 모델링을 중심으로 이루어졌지만 헤어 모델링은 중요하게 다루지 않고 있는 경우가 많다. 본 논문에서는 심층인공신경망의 일종인 FCN (fully connected network)을 이용하여 인물 영상에서 헤어 부분을 영역화하고 그와 가장 유사한 3D 헤어 모델을 데이터베이스에서 검색하여 3 차원 얼굴 모델에 증강함으로써 완전한 얼굴 모델링을 수행하는 방법을 제안한다. 이는 FCN 을 이용하여 다양한 인물 영상에 대하여 네트워크 학습을 수행하는 과정과 3D 헤어 데이터베이스의 구축 과정을 포함한다. 실험 결과 적절한 수준의 헤어 모델이 3 차원 얼굴 모델링 결과물에 증강됨을 확인하였다.

  • PDF

딥러닝 기반의 음원검색 및 분류 시스템 (Deep Learning based Music Classification System)

  • 이세훈;정의중
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2018년도 제58차 하계학술대회논문집 26권2호
    • /
    • pp.119-120
    • /
    • 2018
  • 본 논문에서는 음악을 듣고 어떤 음악인지 인식하고 판별하는 음원분류 시스템과 해당 기술 구현을 딥러닝을 통해 적용하도록 제안하였다. 제안한 시스템은 인공심층신경망을 통해 음원파일을 여러 음원 특징 추출 모델에 따라 검출된 특징들을 학습하여 해당 음원의 고유한 보컬이나 반주의 특색 등을 찾아내어 이를 인식할 수 있도록 구현하였다. 이를 통해, 기존의 Fingerprint 방식의 데이터베이스 검색 시스템과는 다른 접근방식으로 보다 사람이 음악을 기억하는 방법에 가깝도록 구현하여 능동성과 유연성을 개선하고 다양한 응용분야로 활용할 수 있는 시스템을 제안하였다.

  • PDF

혼화재 혼입에 따른 콘크리트 배합요소 산정을 위한 DNN 기반의 예측모델 제안 (Proposal of DNN-based predictive model for calculating concrete mixing proportions accroding to admixture)

  • 최주희;이광수;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.57-58
    • /
    • 2022
  • Concrete mix design is used as essential data for the quality of concrete, analysis of structures, and stable use of sustainable structures. However, since most of the formulation design is established based on the experience of experts, there is a lack of data to base it on. are suffering Accordingly, in this study, the purpose of this study is to build a predictive model to use the concrete mixing factor as basic data for calculation using the DNN technique. As for the data set for DNN model learning, OPC and ternary concrete data were collected according to the presence or absence of admixture, respectively, and the model was separated for OPC and ternary concrete, and training was carried out. In addition, by varying the number of hidden layers of the DNN model, the prediction performance was evaluated according to the model structure. The higher the number of hidden layers in the model, the higher the predictive performance for the prediction of the mixing elements except for the compressive strength factor set as the output value, and the ternary concrete model showed higher performance than the OPC. This is expected because the data set used when training the model also affected the training.

  • PDF

심층인공신경망(DNN)과 다각도 상황 정보 기반의 서울시 도로 링크별 교통 혼잡도 예측 (Prediction of Traffic Congestion in Seoul by Deep Neural Network)

  • 김동현;황기연;윤영
    • 한국ITS학회 논문지
    • /
    • 제18권4호
    • /
    • pp.44-57
    • /
    • 2019
  • 여러 대도시에서 교통 혼잡 문제를 해결하기 위해 정확한 교통 흐름을 예측하는 다양한 연구가 진행되었다. 대부분의 연구가 과거의 교통 흐름 패턴이 미래에도 반복될 것이라는 가정하에 예측 모델을 개발하였으나 교통사고 등과 같은 뜻하지 않은 비반복적 교통 패턴을 예측하는 데에는 신뢰성이 낮게 나타났다. 이런 문제를 해결하기 위한 대안으로 지능형 교통 시스템(ITS)을 통해 얻은 빅데이터와 인공지능을 접목한 교통 흐름 예측 연구가 진행되어 왔다. 하지만 시계열 분석에 일반적으로 사용되는 알고리즘인 RNN의 경우, 단기 예측에 최적화되어 장기 예측 정확도가 낮다는 단점을 가지고 있다. 이런 문제를 해결하기 위해 본 논문에서는 기온과 강수량 등의 기상 정보 외에도 각종 외부 요인들을 고려하여 장기적 시점에서 교통 혼잡도를 예측하는 '심층 인공 신경망 모델'을 제안하였다. TOPIS 자료를 이용한 사례 연구 결과 서울시 주요 도로 링크의 교통 혼잡도를 90%에 가까운 정확도로 예측이 가능하였다. 추후 교통사고나 도로 공사와 같은 도로에 영향을 미치는 이벤트 데이터를 추가로 확보할 수 있다면 정확도는 더욱 높아질 것으로 예상된다.

Deep Learning Similarity-based 1:1 Matching Method for Real Product Image and Drawing Image

  • Han, Gi-Tae
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권12호
    • /
    • pp.59-68
    • /
    • 2022
  • 본 논문은 주어진 현품 영상과 도면 영상의 유사도를 비교하여 1:1 검증을 위한 방법을 제시한 것으로, CNN(Convolutional Neural Network) 기반의 딥러닝 모델을 두 개로 결합하여 Siamese Net을 구성하고 현품 영상과 도면 영상(정면도, 좌우 측면도, 평면도 등)을 같은 제품이면 1로 다른 제품이면 0으로 학습하며, 추론은 현품 영상과 도면 영상을 쌍으로 질의하여 해당 쌍이 같은 제품인지 아닌지를 판별하는 딥러닝 모델을 제안한다. 현품 영상과 도면 영상과의 유사도가 문턱 값(Threshold: 0.5) 이상이면 동일한 제품이고, 문턱 값 미만이면 다른 제품이라고 판별한다. 본 연구에서는 질의 쌍으로 동일제품의 현품 영상과 도면 영상이 주어졌을 때(긍정 : 긍정) "동일제품"으로 판별할 정확도는 약 71.8%로 나타났고, 질의 쌍으로 다른 현품 영상과 도면 영상이 주어졌을 때(긍정: 부정) "다른제품"으로 판별할 정확도는 약 83.1%를 나타내었다. 향후 제안한 모델에 파라미터 최적화 연구를 접목하고 데이터 정제 등의 과정을 추가하여 현품 영상과 도면 영상의 매칭 정확도를 높이는 연구를 진행할 예정이다.

지형정보를 이용한 유효토심 분류방법비교 (Comparison of Effective Soil Depth Classification Methods Using Topographic Information)

  • 김병수;최주성;이자경;정나영;김태형
    • 한국지반신소재학회논문집
    • /
    • 제22권2호
    • /
    • pp.1-12
    • /
    • 2023
  • 국내외적으로 다양한 산사태 발생원인 분석과 취약지역의 예측이 이루어지고 있다. 본 연구에서는 산사태에서 발생하는 재해의 분석 및 예측에 사용되는 많은 특성 중 필수적인 요소인 유효토심을 지형정보를 이용해 예측했다. 지형정보 데이터를 각 기관별로 획득한 후 100m × 100m의 격자에 속성정보로 할당하고 데이터 등급화를 통해 차원을 축소 시켜주었다. 분류기준으로 3개 깊이(얕음, 보통, 깊음)와 5개 깊이(매우 얕음, 얕음, 보통, 깊음, 아주 깊음)의 두 가지 경우에 대해 유효토심을 예측했다. K-최근접 이웃, 랜덤 포레스트, 심층인공신경망 모델을 통해 예측하고 정확도, 정밀도, 재현율, F1-점수를 계산해 그 성능을 비교했다. 예측결과 모델에 따라 50% 후반에서 70% 초반의 성능을 보였다. 3개 분류기준의 정확도가 5개 분류기준의 정확도보다 5% 정도 높았다. 본 연구에서 제시한 등급화 기준과 분류모델의 성능은 아직 미흡하지만 유효토심의 예측에 있어서 분류모델의 적용이 가능하다고 판단된다. 큰 지역을 획일적으로 가정하여 사용하는 현재의 유효토심보다 신뢰성 있는 값의 예측이 가능하다고 사료된다.