• Title/Summary/Keyword: 실효지연확산

Search Result 4, Processing Time 0.019 seconds

Experimental Analyses of Delay Spread and Path Loaa of 2 GHz Wave Proppagation in a Building (건물내 2 GHz 전파전파의 지연확산과 경로손실 특성의 실험적 분석)

  • Kwon, Oh-Geug;Ha, Won;Park, Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.11A
    • /
    • pp.1613-1619
    • /
    • 2000
  • 이 논문에서는 전파재널 측정 시스템을 이용하여 건물내 무선 채널의 전파특성인 실효 시간지연 확산과 경로손실을 측정하고 분석한 결과를 제시한다. 구성된 측정 시스템은 미끄럼 상관기를 이용한 대역확산 채널 측정 시스템에서 2 GHz에서 동작하며 3 m 의 분해능을 갖는다. 건물내 무선 채널 특성의 측정환경은 송신 안테나와 수신 안테나가 같은 층에 있을때, 서로 다른 층에 있을때, 그리고 사무실 안에 같이 위치할 때의환경으로구분하여 실험한다.

  • PDF

Indoor Propagation Channel Modeling Using the Finite Difference Time Domain Method (시간영역 유한차분법을 이용한 실내 전파 채널 모델링)

  • Chung, Sun-Oh;Lim, Yeong-Seog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1847-1853
    • /
    • 2011
  • Analysis of an indoor propagation channel has conventionally used the ray-tracing method. But, in this paper, we had modelling the channel for three dimensional indoor structure by the finite difference time domain method for three dimensional full wave analysis. An excitation signal of the FDTD method used plane wave. The plane wave was excited using the total field/scattered field method. And absorbing boundary condition used the perfectly matched layer method with 7 layers. An living room for the simulation of indoor channel modeling is surrounded the wall that be composed of the wood, the conductor, the glass and concrete. When there are furniture in the living room or not, it were simulated, respectively. As simulation results, we could identify the fading effect of multipath at indoor propagation environment, calculated mean excess delay and rms delay spread for the receiver design.

A Rapid Signal Acquisition Scheme for Noncoherent UWB Systems (비동기식 초광대역 시스템을 위한 고속 신호 동기획득 기법)

  • Kim Jae-Woon;Yang Suck-Chel;Choi Sung-Soo;Shin Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4C
    • /
    • pp.331-340
    • /
    • 2006
  • In this Paper, we propose to extend the TSS-LS(Two-Step Search scheme with Linear search based Second step) scheme which was already proposed by the authors for coherent UWB(Ultra Wide Band) systems, to rapid and reliable acquisition of noncoherent UWB systems in multipath channels. The proposed noncoherent TSS-LS employing simple energy window banks utilizes two different thresholds and search windows to achieve fast acquisition. Furthermore, the linear search is adopted for the second step in the proposed scheme to correctly find the starting point in the range of effective delay spread of the multipath channels, and to obtain reliable BER(Bit Error Rate) performance of the noncoherent UWB systems. Simulation results with multipath channel models by IEEE 802.15.3a show that the proposed two-step search scheme can achieve significant reduction of the required mean acquisition time as compared to general search schemes. ]n addition, the proposed scheme achieves quite good BER performance for large signal-to-noise ratios, which is favorably comparable to the case of ideal perfect timing.

On the Performance Analysis of Coherent Bandwidth in Underwater Channel Environments Using Beamforming Technologies Based on the Use of Measurement Data (측정 데이터를 이용한 빔형성기의 적용에 의한 수중 채널 환경에서의 상관 대역폭 분석)

  • Kim, Min-Sang;Cho, Dae-Young;Kim, Kye-Won;Lee, Tae-Seok;Park, Jong-Won;Lim, Yong-Gon;Ko, Hak-Lim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.4
    • /
    • pp.162-168
    • /
    • 2014
  • The OFDM system have been widely studied for the purpose of increasing data rate with more reliable communications in underwater channel environments. And it is possible only when the sub-carrier's bandwidth is smaller than the coherence bandwidth of channel in the underwater OFDM communication system. However, the size of the FFT for the OFDM system will be increased because the coherence bandwidth is as small as several tens of Hz in real underwater channel environments. Also, It is necessary to add a CP having a length longer than the rms delay spread of a channel. So the complexity of the system is increased and the data efficiency is reduced. Therefore, in this paper, we have studied the increase of the coherence bandwidth by adapting the beamforming technologies. To do this, we have collected data from real underwater channel environments and analyzed the coherence bandwidth when adapting the beamforming technologies. Analyzing the experimental data show that the coherence bandwidth by the beamforming technologies in underwater channel environments was greatly increased compared to that of a single sensor.