Kim, Seong-Heon;Kim, Hyung-Kweon;Lee, Si-Young;Kwon, Jin-Kyung
Journal of Bio-Environment Control
/
v.31
no.2
/
pp.90-97
/
2022
This study was carried out to investigate the effect of side vent heights on temperature and relative humidity inside and outside the single-span plastic greenhouse (W: 7 m, L: 40 m H: 3.9 m) during natural ventilation. Four different heights (120, 100, 80, 60 cm) of the side vent were used as an experimental condition. Variations of temperature and relative humidity inside and outside the greenhouse and the differences between heights were compared by using one-way ANOVA. In the daytime, the difference in temperature between inside and outside the greenhouse was dropped from 14.0℃ to 7.1℃ as the side vent height increased. The temperature difference in the nighttime was less than 0.2℃ regardless of the height. One-way ANOVA on the temperature difference between heights presented that the statistical significance was founded between all of the combinations of height in the daytime. The difference in relative humidity between inside and outside the greenhouse was grown from -13.8% to -22.2% with a decrease in the side vent height. The humidity difference in the nighttime was less than 1% regardless of the height. One-way ANOVA on the humidity difference revealed that most of the side vent heights showed significance in the daytime but between 100 and 80 cm was not significant. It seemed because the external air became cooler during the experiment with a height of 80 cm. Conclusively, this study empirically demonstrated that the higher side vents resulted in the decrease of differences in temperature and relative humidity between inside and outside the greenhouse, and also the effect of side vent height was statistically significant. This study may be helpful for deciding the height of the side vent effective for controlling temperature and relative humidity in a single-span greenhouse during natural ventilation.
Lee, Sung Woo;Kim, Young Kul;Lee, Choong Hwa;Byun, Jae Kyoung
Journal of Korean Society of Forest Science
/
v.90
no.4
/
pp.431-436
/
2001
The extractable sulfate content and sulfate adsorption capacity in soils of four Pinus densiflora stands were measured to assess the soil acidification sensitivity to acid deposition. The soluble sulfate content in organic horizon which reflects the previous deposition of sulfur oxides was much higher for Namsan and Ulsan than Kanghwa and Hongcheon. In mineral soils, however, the extractable sulfate content was the greatest for Ulsan followed by Kanghwa, Namsan and Hongcheon due to the interactive effect of previous deposition and soil adsorption of sulfate. Adsorption rates of specifically adsorbed sulfate(proportion of insoluble sulfate to total extractable sulfate) for Namsan, Kanghwa and Ulsan affected by acid deposition were 16.6%, 56.8% and 37.4%, respectively, so that the soil in Namsan had the highest acidification sensitivity to acid deposition. For sulfate adsorption isotherm($RE=mX_i-b$), the significantly positive correlations between added sulfate($X_i$) and adsorbed sulfate(RE) were found only in mineral soil(p<0.05) over all regions. The regression coefficient(m) that means soil sulfate adsorption capacity by 0-30cm depth was 0.16, 0.24, 0.25 and 0.32 in $mmol_c\;kg^{-1}$ for Namsan, Kanghwa, Ulsan and Hongcheon, respectively, indicating that soil acidification sensitivity is the highest for Namsan. The added sulfate($X_i$) that could make the adsorbed sulfate(RE) null was 3.81, 2.17, 4.96 and 0.65 in $mmol_c\;kg^{-1}$ for Namsan, Kanghwa, Ulsan and Hongcheon, respectively and the values of former three regions considerably exceeded the realistic sulfate deposition.
The satellite sensor model is typically established using ground control points acquired by ground survey Of existing topographic maps. In some cases where the targeted area can't be accessed and the topographic maps are not available, it is difficult to obtain ground control points so that geospatial information could not be obtained from satellite image. The paper presents several satellite sensor models and satellite image decomposition methods for non-accessible area where ground control points can hardly acquired in conventional ways. First, 10 different satellite sensor models, which were extended from collinearity condition equations, were developed and then the behavior of each sensor model was investigated. Secondly, satellite images were decomposed and also pseudo images were generated. The satellite sensor model extended from collinearity equations was represented by the six exterior orientation parameters in 1$^{st}$, 2$^{nd}$ and 3$^{rd}$ order function of satellite image row. Among them, the rotational angle parameters such as $\omega$(omega) and $\phi$(phi) correlated highly with positional parameters could be assigned to constant values. For non-accessible area, satellite images were decomposed, which means that two consecutive images were combined as one image. The combined image consists of one satellite image with ground control points and the other without ground control points. In addition, a pseudo image which is an imaginary image, was prepared from one satellite image with ground control points and the other without ground control points. In other words, the pseudo image is an arbitrary image bridging two consecutive images. For the experiments, SPOT satellite images exposed to the similar area in different pass were used. Conclusively, it was found that 10 different satellite sensor models and 5 different decomposed methods delivered different levels of accuracy. Among them, the satellite camera model with 1$^{st}$ order function of image row for positional orientation parameters and rotational angle parameter of kappa, and constant rotational angle parameter omega and phi provided the best 60m maximum error at check point with pseudo images arrangement.
Larvae of the silkworm (Bombyx mori L.) were reared during the 5th instar on the four kinds of artificial diets on the basis of the different amounts of soybean meal used as the protein source. In this experiment it was shown that the various levels of protein in the diet affected not only the growth and silk production but the digestibility of the diet. haemolymph protein and uric acid excretion. The results obtained are summarized as follows; 1. By an increase of the level of protein in the diet the apparant digestibility was increased. but the protein digestibility was comparatively decreased. 2. Larval body weight increment was not observed by the 3rd day of the 5th instar, but was increased from the 4th day as the level of protein was increased in the diet. 3. After the 3rd day of the 5th instar, protein content in the hemolymph was increased steeply by an increase of the protein content in the diet. However, the percentage of hemolymph protein to the ingested protein was decreased from the 2nd day of the 5th instar and increased more or less after the 4th day. 4. An increase of the uric acid excretion was observed as the content of protein in the diet was increased but the pattern of the uric acid excretion was different between high and low-protein diet. However, the percentage of the uric acid excretion to the ingested protein and to the hemolymph protein were both decreased steeply after the 2nd day of the 5th instar. 5. It was also evident that the high-protein diet increased the cocoon productivity. 6. It showed that the feed efficiency for body weight increment and silk formation was high by an increase of the level of protein in the diet, but the protein efficiency was not.
A population ecological study was carried out to estimate survival and growth rates, biomass, biological production and turnover ratio of cultured sea squirt, Halocynthia roretzi, by growth stages, using data from in situ culture experiment off Hansando in the southern part of Korea from February 1985 to July 1986. The squirt population followed an exponential decay function and the instantaneous coefficient of total mortality (Z) was estimated to be 0.0614 $month^{-1}$(Var (Z) = 0.000126). Growths in total weight and meat weight of squirts were expressed as linear functions during the period of culture experiment. The growth of squirts showed a negative correlation with the water temperature. The mean biomass per string ranged from 2.14 kg for March of the first year to 16.26 kg for March of the next year. The biological production per string was estimated to range from 3.28 kg for the first summer (June - July) to 6.46kg for the first late winter (February-March). The peak of turnover ratio occurred in the late winter (February-March) as 3.013 and the ratios sharply declined thereafter. Based on the results of this study, management implications for culturing sea squirts were also suggested. The optimum harvest time ($t_{mb}$) when the peak biomass in terms of total weight occurred was estimated to be late June of the second year, which corresponded to 16.7 months after the main hanging. However, the time when the peak biomass in terms of meat weight was occurred was early July of the second year. The maximum harvest biomass was 17.4 kg per string in terms of total weight and 6.3 kg per string in terms of meat weight. In conclusion, the process of culture should be conducted on the basis of the knowledge of population ecological theories as shown in this study.
The paper presents several satellite models and satellite image decomposition methods for inaccessible area where ground control points can hardly acquired in conventional ways. First, 10 different satellite sensor models, which were extended from collinearity condition equations, were developed and then behavior of each sensor model was investigated. Secondly, satellite images were decomposed and also pseudo images were generated. The satellite sensor model extended from collinearity equations was represented by the six exterior orientation parameters in $1^{st}$, $2^{nd}$ and $3^{rd}$ order function of satellite image row. Among them, the rotational angle parameters such as $\omega$(omega) and $\Phi$(phi) correlated highly with positional parameters could be assigned to constant values. For inaccessible area, satellite images were decomposed, which means that two consecutive images were combined as one image, The combined image consists of one satellite image with ground control points and the other without ground control points. In addition, a pseudo image which is an imaginary image, was prepared from one satellite image with ground control points and the other without ground control points. In other words, the pseudo image is an arbitrary image bridging two consecutive images. For the experiments, SPOT satellite images exposed to the similar area in different pass were used. Conclusively, it was found that 10 different satellite sensor models and 5 different decomposed methods delivered different levels of accuracy. Among them, the satellite camera model with 1st order function of image row for positional orientation parameters and rotational angle parameter of kappa, and constant rotational angle parameter omega and phi provided the best 60m maximum error at check point with pseudo images arrangement.
Plant growth and development are also affected by root-zone environment. Therefore, it is important to consider the variables of the root-zone environment when establishing an irrigation strategy. The purpose of this study is to analyze the relationship between the volumetric moisture content (VWC), Bulk EC (ECb), and Pore EC (ECp) used by plant roots using FDR sensors in two types of rockwool media with different water transmission characteristics, using the method above this was used to establish a method for collecting and correcting available root-zone environmental data. For the experiment, two types of rockwool medium (RW1, RW2) with different physical characteristics were used. The moisture content (MC) and ECb were measured using an FDR sensor, ECp was measured after extracting the residual nutrient solution from the medium using a disposable syringe in the center of the medium at a volumetric moisture content (VWC) of 10-100%. Then, ECb and ECp are measured by supplying nutrient solution having different concentration (distilled water, 0.5-5.0) to two types of media (RW1, RW2) in each volume water content range (0 to 100%). The relationship between ECb and ECp in RW1 and RW2 media is best suited for cubic polynomial. The relationship between ECb and ECp according to volume moisture content (VWC) range showed a large error rate in the low volume moisture content (VWC) range of 10-60%. The correlation between the sensor measured value (ECb) and the ECp used by plant roots according to the volumetric water content (VWC) range was the most suitable for the Paraboloid equation in both media (RW1, RW2). The coefficient of determination the calibration equation for RW1 and RW2 media were 0.936, 0.947, respectively.
Phase holdup characteristics of relatively large and small bubbles were investigated in a three-phase(gasliquid-solid) fluidized bed of which diameter was 0.105 m(ID) and 2.5 m in height, respectively. Effects of gas(0.01~0.07 m/s) and liquid velocities(0.01~0.07 m/s) and particle size($0.5{\sim}3.0{\times}10^{-3}m$) on the holdups of relatively large and small bubbles were determined. The holdups of two kinds of bubbles in three phase fluidized beds were estimated by means of static pressure drop method with the knowledge of pressure drops corresponding to each kind of bubble, respectively, which were obtained by dynamic gas disengagement method. Dried and filtered air which was regulated by gas regulator, tap water and glass bead of which density was $2500kg/m^3$ were served as a gas, a liquid and a fluidized solid phase, respectively. The two kinds of bubbles in three-phase fluidized beds, relatively large and small bubbles, were effectively detected and distinguished by measuring the pressure drop variation after stopping the gas and liquid flow into the column as a step function: The increase slope of pressure drop with a variation of elapsed time was quite different from each other. It was found that the holdup of relatively large bubbles increased with increasing gas velocity but decreased with liquid velocity. However, the holdup showed a local minimum with a variation of size of fluidized solid particles. The holdup of relatively small bubbles increased with an increase in the gas velocity or solid particle size, while it decreased slightly with an increase in the liquid velocity. The holdups of two kinds of bubbles were well correlated in terms of operating variables within this experimental conditions, respectively.
Holdup characteristics of bubble, wake and continuous liquid phases were investigated in bubble columns with viscous liquid media. Effects of column diameter(0.051, 0.076, 0.102 and 0.152 m ID), gas velocity($U_G$=0.02~0.16 m/s) and liquid viscosity(${\mu}_L$=0.001~0.050 $Pa{\cdot}s$) of continuous liquid media on the holdups of bubble, wake and continuous liquid phases were discussed. The three phase such as bubble, wake and continuous liquid phases were classified successfully by adapting the dual electrical resistivity probe method. Compressed filtered air and water or aqueous solutions of CMC(Carboxy Methyl Cellulose) were used as a gas and a liquid phase, respectively. To detect the wake as well as bubble phases in the bubble column continuously, a data acquisition system(DT 2805 Lab Card) with personal computer was used. The analog signals obtained from the probe circuit were processed to produce the digital data, from which the wake phase was detected behind the multi-bubbles as well as single bubbles rising in the bubble columns. The holdup of bubble and wake phases decreased but that of continuous liquid media increased, with an increase in the column diameter or liquid viscosity. However, the holdup of bubble and wake phases increased but that of continuous media decreased with an increase in the gas velocity. The holdup ratio of wake to wake to bubble phase decreased with an increase in the column diameter or gas velocity, however, increased with an increase in the viscosity of con-tinuous liquid media. The holdups of bubble, wake and continuous liquid media could be correlated in terms of operating variables within this experimental conditions as: ${\varepsilon}_B=0.043D^{-0.18}U_G^{0.56}{\mu}_L^{-0.13}$, ${\varepsilon}_W=0.003D^{-0.85}U_G^{0.46}{\mu}_L^{-0.10}$, ${\varepsilon}_C=1.179D^{0.09}U_G^{-0.13}{\mu}_L^{0.04}$.
The present study compared computer users target-selection response patterns when the targets were varied in terms of their relative location and distance from the current position of the cursor. In Experiment 1, where the mouse was used as an input device, the effects of different directions and distances of simple target(small rectangle) on target-selection response were investigated. The results of Experiment 1 can be summarized as follows: (1) Overshooting was more frequent than either undershooting or correct movement and (2) this tendency was more prominent when the targets were presented in the oblique direction or in farther location from the current cursor position. (3) Although the overshooting and undershooting were more frequent in the oblique direction, the degree of deviation was larger in horizontal and vertical direction. (4) Time spent in moving the mouse rather than that spent in planning, calibrating or clicking was found to be the most critical factor in determining total response time. In Experiment 2, effects of the font size and line-height of the target on target-selection response were compared with regard to two types of input devices(keyboard vs. mouse). The results are as follows: (1) Mouse generally yielded shorter target-selection time than keyboard. but this tendency was reversed when the targets were presented in horizontal and vertical directions. (2) In general, target-selection time was the longest in the condition of font size of 10 and line-height of 100%, and the shortest in the condition of font size of 12 and line-height of 150%. (3) When keyboard was used as the input device, target-selection time was shortest in the 150% line-height condition, whereas in the mouse condition, target-selection time tended to be increased as the line-height increased. which resulted in the significant interaction effect between input device and line-height. Finally, several issues relating to human-computer interaction were discussed based on the results of the present study.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.