• Title/Summary/Keyword: 실행 시간 디코딩

Search Result 11, Processing Time 0.015 seconds

The Design of 32 Bit Microprocessor for Sequence Control Using FPGA (FPGA를 이용한 시퀀스 제어용 32비트 마이크로프로세서 설계)

  • Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.6
    • /
    • pp.431-441
    • /
    • 2003
  • This paper presents the design of 32 bit microprocessor for a sequence control using a field programmable gate array(FPGA). The microprocessor was designed by a VHDL with top down method, the program memory was separated from the data memory for high speed execution of sequence instructions. Therefore it was possible that sequence instructions could be operated at the same time during the instruction fetch cycle. In order to reduce the instruction decoding time and the interface time of the data memory interface, an instruction code size was implemented by 32 bits. And the real time debug operation was implemented for easeful debugging the designed processor with a single step run, PC break point run, data memory break point run. Also in this designed microprocessor, pulse instructions, step controllers, master controllers, BM and BCD type arithmetic instructions, barrel shift instructions were implemented for sequence logic control. The FPGA was synthesized under a Xilinx's Foundation 4.2i Project Manager using a V600EHQ240 which contains 600,000 gates. Finally simulation and experiment were successfully performed respectively. For showing good performance, the designed microprocessor for the sequence logic control was compared with the H8S/2148 microprocessor which contained many bit instructions for sequence logic control. The designed processor for the sequence logic showed good performance.