• Title/Summary/Keyword: 실해역 실험

Search Result 68, Processing Time 0.028 seconds

A Study on Red Tide Control with Loess Suspension (부유황토에 의한 적종방제 연구)

  • Na Gui-Hwan;Choi Woo-Jeong;Chun Young-Yull
    • Journal of Aquaculture
    • /
    • v.9 no.3
    • /
    • pp.239-245
    • /
    • 1996
  • As one of the red tide control method, montmorillonite was used to eliminate the causative organisms in Korea and Japan. We assayed the loess to replace the montmorillonite because it distribute in large quantity and nearby the red tide occurrence in South Coast of Korea. By using the mixture of loess and coal ashes, we examined the decreasing level of nutrients such as ammonia and phosphate, the elimination of causative organisms as a chlorophyll a content, and the harmful effect on aquaculture orgarnisms in cage culture farms. Half of the ammonium and phosphate was adsorbed by the loess particles, but only $25\%$ of ammonium was adsorbed by the coal ashes particles. In water column test, the particles of loess and coal ashes were settled down by $80\%$ in 20 minutes, the red tide organisms was eliminated by $80\%$ after 2 hours in 1,000 ppm of loess suspension, but the organisms were eliminated only $30\%$ by the same concentration of coal ashes. The harmful test of fishes and invertbrates, we observed any other negative effects of test animals than a tint deceleration in yellowtail.

  • PDF

Removal Efficiency of Cochiodinium polykrikoides by Yellow Loess (황토의 유해성 적조생물 Cochiodinium종의 제거효과)

  • CHOI Hee Gu;KIM Pyoung Soong;LEE Won Chan;YUN Seong Jong;KIM Hak Gyoon;LEE Hung Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.1
    • /
    • pp.109-113
    • /
    • 1998
  • The clay and yellow loess have capability to adsorb and precipitate particles. The removal efficiencyes of those flocculents on the dinoflagellate, Cochlodinium polykrikoides, have been studied in laboratory and in field near Tongyong fish farm in September, 1996. The removal efficiencyes in the laboratory experiment was $43\%$ for $2\;g/{\ell}$, $64\%$ for $6g/{\ell}$ and $88\%$ for $10\;g/{\ell}$ in one hour after dispersion. No big difference of removal efficiency was found between the raw and the acid-activated loess. In the field survey, the removal rates ranged from 72 to $80\%$ in 30 min after the dispersion. The effect of loess scattering on water quality was estimated. The concentrations of dissolved inorganic nitrogen (DIN), chemical of gen demand (COD) and chlorophyll a decreased more or less after dispersion, while the concentration of suspended solid (SS) increased. The concentrations of dissolved oxygen (DO) and dissolved inorganic phosphorous (DIP) were kept constant. These results indicated that the dispersion concentration of more than $10g/{\ell}$ has a good removal efficiency of above $80\%$ without big variation of water quality after dispersion of yellow loess.

  • PDF

SPH-Based Wave Tank Simulations (SPH 기법 기반의 파동수조 시뮬레이션)

  • Lee, Sangmin;Kim, Mujong;Ko, Kwonhwan;Hong, Jung-Wuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.59-69
    • /
    • 2021
  • Recently, large-scale offshore and coastal structures have been constructed owing to the increasing interest in eco-friendly energy development. To achieve this, precise simulations of waves are necessary to ensure the safe operations of marine structures. Several experiments are required in the field to understand the offshore wave; however, in terms of scale, it is difficult to control variables, and the cost is significant. In this study, numerical waves under various wave conditions are produced using a piston-type wavemaker, and the produced wave profiles are verified by comparing with the results from a numerical wave tank (NWT) modeled using the smoothed particle hydrodynamics (SPH) method and theoretical equations. To minimize the effect by the reflected wave, a mass-weighted damping zone is set at the right end of the NWT, and therefore, stable and uniform waves are simulated. The waves are generated using the linear and Stokes wave theories, and it is observed that the numerical wave profiles calculated by the Stokes wave theory yield high accuracy. When the relative depth is smaller than two, the results show good agreement irrespective of the wave steepness. However, when the relative depth and wave steepness are larger than 2 and 0.04, respectively, the errors are negligible if the measurement position is close to the excitation plate. However, the error is 10% or larger if the measurement position is away from the excitation location. Applicable target wave ranges are confirmed through various case studies.

The Phase Difference Effects on 3-D Structure of Wave Pressure Acting on a Composite Breakwater (혼성방파제에 작용하는 3차원 파압구조에 미치는 위상차의 영향)

  • Hur, Dong-Soo;Yeom, Gyeong-Seon;Bae, Ki-Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.563-572
    • /
    • 2006
  • In designing the coastal structures, the accurate estimation of wave forces on them is very important. Recently, the empirical formulae such as Goda formula are widely used to estimate wave forces, as well as 2-D hydraulic and numerical model tests. But, sometimes, these estimation methods mentioned above seem to be unreasonable to predict 3-D structure of wave pressure on the coastal structures with 3-D plane arrangement in the real coastal area. Especially, in case of consideration of phase difference at harbor and seaward sides of the large-sized coastal structures like a composite breakwater, it is easily expected that the real wave pressures on each section of coastal structure have 3-D distribution. A new numerical model of 3-D Large Eddy Simulation, which is applicable to permeable structure, is developed to clarify the 3-D structure of wave pressures acting on coastal structure. The calculated wave forces on 3-D structure installed on the submerged breakwater show in good agreement with the measured values. In this study, the composite breakwater is adopted as a representative structure among the large-sized coastal structures and the 3-D structure of wave pressures on it is discussed in relation to the phase difference at harbor and seaward sides of it due to wave diffraction and transmitted wave through rubble mound.

A Study on Mass Rescue Operation Utilizing an Oil Boom (오일펜스를 활용한 다수 인명의 구조에 관한 연구)

  • Jeong, Bong Hun;Choi, Hyun Kue;Park, Gap Jun;Ha, Seung Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.686-693
    • /
    • 2018
  • After the Sewol ferry-sinking incident in 2014, the public interest in safety at sea increased. In order to save and secure the initial response time required for sea rescues, not only the rescue organization, but also the victim needs to save and maintain golden time to secure the necessary time for rescue personnel. The purpose of this study was to investigate ways to maintain the psychological stability of victims during their rescue in the case of a mass rescue operation by using the oil boom installed on board oil spill response vessels. Through buoyancy tests and the development of oil booms in sea areas, it confirmed the buoyancy of two adults weighing 70 kg each per meter of oil boom could be maintained when a lifeline was installed on the side of the oil boom, and that it was possible to keep afloat four persons weighing 70 kg each on both sides of the oil boom. It also confirmed the buoyancy for three adults weighting 70 kg each per eight meters was maintained when riding on the top of the oil boom. As a method of rescue, it was found that the fastest and most accurate way to rescue victims was a rescue boat held at the rear end of the oil boom to lead to victims. In conclusion, the rescue team could utilize the oil boom installed on board the oil spill response vessel located near the marine accident site to save and secure the initial response time required for the rescue team to arrive. The victims in distress holding onto the lifeline or riding on the top of oil boom kept afloat at sea could maintain their psychological stability until the mass rescue operation initiated.

Application of Wave Resonator to the Field for Controlling Secondary Undulation (부진동의 제어를 위한 공진장치의 현장적용)

  • Lee, Kwang-Ho;Beom, Seong-Sim;Kim, Do-Sam;Choi, Nack-Hoon;Park, Jong-Bae;An, Seong-Wook
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.1
    • /
    • pp.58-65
    • /
    • 2012
  • In this study, to reduce the motion of the vessels resulting from resonance and secondary undulation by long-period waves, numerical review on the control performance of resonator was carried out by attaching the resonator to the established harbor of real waters. In the numerical analysis, CGWAVE MODULE of commercial software SMS(Surface water Modeling System), a finite element model based on 2-dimensional elliptical mild slope equation was applied, and through comparative analysis of the existing experiments and analysis results on the rectangular model ports, the validity of the friction coefficients in which validity and effectiveness of SMS on the secondary undulation analysis is applied was verified. Based on this, the control performance of resonator was confirmed through comparative review of the secondary undulation according to whether or not to attach the resonator to rectangular harbor. In addition, to reduce long-period motion of the moored vessels and the secondary undulation which may occur in Pohang new port, the method to move the resonant period which causes abnormal motion of the vessels to long-term one was discussed through application of the resonators with various sizes, thereby identifying the availability.

Performance analysis of OFDM and CDMA communication methods in underwater acoustic channel (수중 채널 환경에서 OFDM 및 CDMA 통신 방식별 성능 분석)

  • Kim, Kil-Yong;Kim, Min-Sang;Ko, Hak-Lim;Im, Tae-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.30-38
    • /
    • 2019
  • In recent years, researches on various communication methods have been conducted, particularly on OFDM (Orthogonal Frequency Division Multiplexing) and CDMA (Code Division Multiple Access) methods, as the use of underwater communication increases. While OFDM is, in general, advantageous in that it is resistant to Doppler in the water and it enables a high-speed communication, CDMA is resistant to frequency selective fading in the water and it can reduce energy consumption. Therefore, in this paper, we performed experiments in the shallow water in Western Sea of Korea to analyze the performance of OFDM and CDMA communication systems in the underwater channel environment. The maximum delay spread and Doppler spread were drawn by using the data obtained from the real sea area in order to analyze the underwater channel environment characteristics of the shallow water in Western Sea of Korea. The communication performances of OFDM and CDMA are shown as coded BER (Bit Error Rate) according to the variation of the maximum delay spread and the Doppler spread, respectively. The result of the analysis show that the OFDM method has more resistant performances to the underwater channel environment changes than the CDMA method.

Use of Numerical Simulation for Water Area Observation by Microwave Radar (마이크로웨이브 레이더를 이용한 수역관측에 있어서의 수치 시뮬레이션 이용)

  • Yoshida, Takero;Rheem, Chang-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.208-218
    • /
    • 2012
  • Numerical simulation technique has been developed to calculate microwave backscattering from water surface. The simulation plays a role of a substitute for experiments. Validation of the simulation was shown by comparing with experimental results. Water area observations by microwave radar have been simulated to evaluate algorithms and systems. Furthermore, the simulation can be used to understand microwave scattering mechanism on the water surface. The simulation has applied to the various methods for water area observations, and the utilizations of the simulation are introduced in this paper. In the case of fixed radar, we show following examples, 1. Radar image with a pulse Doppler radar, 2. Effect of microwave irradiation width and 3. River observation (Water level observation). In addition, another application (4.Synthetic aperture radar image) is also described. The details of the applications are as follows. 1. Radar image with a pulse Doppler radar: A new system for the sea surface observation is suggested by the simulation. A pulse Doppler radar is assumed to obtain radar images that display amplitude and frequency modulation of backscattered microwaves. The simulation results show that the radar images of the frequency modulation is useful to measure sea surface waves. 2. Effect of microwave irradiation width: It is reported (Rheem[2008]) that microwave irradiation width on the sea surface affects Doppler spectra measured by a CW (Continuous wave) Doppler radar. Therefore the relation between the microwave irradiation width and the Doppler spectra is evaluated numerically. We have shown the suitable condition for wave height estimation by a Doppler radar. 3. River observation (Water level observation): We have also evaluated algorithms to estimate water current and water level of river. The same algorithms to estimate sea surface current and sea surface level are applied to the river observation. The simulation is conducted to confirm the accuracy of the river observation by using a pulse Doppler radar. 4. Synthetic aperture radar (SAR) image: SAR images are helpful to observe the global sea surface. However, imaging mechanisms are complicated and validation of analytical algorithms by SAR images is quite difficult. In order to deal with the problems, SAR images in oceanic scenes are simulated.