• Title/Summary/Keyword: 실트

Search Result 481, Processing Time 0.024 seconds

Evaluation of Applicability of Dilatometer Dissipation Test Method for Estimating Horizontal Coefficient of Consolidation in Korean Soft Deposits (딜라토메터를 이용한 수평압밀계수 추정법의 국내 지반 적용성 평가)

  • 이승래;김영상;성주현
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.153-160
    • /
    • 2001
  • 딜라토메터를 이용한 현장 수평압밀계수 추정법의 국내 점토지반 및 실트질 지반에의 적용성을 평가하기 위해 국내 점토지반과 실트지반에 대하여 각각 딜라토메터 관입시험 및 소산시험을 수행하였다. 소산시험 결과로부터 DMT-C법 [p$_2$-log t법과 C-√t법]과 DMT-A법을 이용하여 수평압밀계수를 추정하여 상호 비교하였으며 다른 실험방법에서 얻어진 결과들과도 함께 비교하고 평가하였다. 비교대상으로는 동일지반의 현장 피에조콘 소산시험으로 얻어진 수평압밀계수 및 불교란시료에 대하여 수행된 로셀압밀실험 및 일차원 실내압밀실험 결과가 함께 이용되었다. 연구결과 C-√t법을 제외한 p$_2$-log t법과 DMT-A법은 국내 점토지반에 대하여 상호일치하는 결과를 줄 뿐 아니라 피에조콘 결과와도 비교적 잘 일치하는 수평 압밀계수를 측정하였으며 다른 결과와 비교할 때 신뢰성 있는 결과를 주었다. 그러나 실트질 지반에 대하여는 p$_2$-log t법만이 적용 가능할 것으로 판단된다.

  • PDF

Post-liquefaction Behavior under Monotonic Loading of a Silty Sand (실트질 모래의 액상화 후의 정적거동)

  • 강병희;박근보;강대성
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.27-36
    • /
    • 2000
  • 보통으로 다져진(Dr=50%)실트질 모래의 액상화 후의 비배수정적거동과 이에 대한 압밀응력비의 영향에 관해서 연구하기 위하여 4가지 압밀응력비(σhc'/σVC'=1.0,0.7,0.55,K0)로서 압밀시킨 공시체를 액상화 전후상태에서 비배수 삼축시험을 수행하였다. 연구결과 액상화를 경험하지 않은 실트질 모래의 p'-q좌표상의 상전이선과 파괴선은 모두 구속압밀응력과 압밀응력비의 크기에 관계없이 각각 원점을 지나는 하나의 직선으로 나타난다. 또한 상정이전단저항은 구속응력이 클수록 증가하난 동일한 구속응력하에서는 압밀응력비와는 관계없이 거의 동일한 값을 갖는 경향을 나타낸다.

  • PDF

Mineralogical and Geochemical Properties and Origin of Clay-silt Sediments, Suwon, Korea (경기도 수원시에서 산출되는 적갈색 점토-실트 퇴적물의 광물 및 지화학 특성과 기원)

  • Jeong, Gi Young
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.153-163
    • /
    • 2020
  • Mineral and geochemical analysis were conducted on two sections (~3.5 m) of red-brown claysilt sediments covering the gneiss and granite weathering zones in Suwon-si for establishing Quaternary paleoenvironmental changes in Korea. The sections were divided into four sedimentary layers (Unit 1-4) by vertical changes in mineral composition and chemical composition. The lowermost unit 1 was a sandy sediment with a high K-feldspar content with a significant contribution of weathered bedrock. Unit 2 was a transition layer showing intermediate characteristics. Unit 3 was a reddish brown clay-silt sediment, with a total clay content of 58% on average, and the main clay minerals were illite-smectite mixed layer minerals and hydroxy-interlayered vermiculite/smectite. Unit 3 contained almost no plagioclase, while the content of kaolin minerals derived by the plagioclase weathering was higher than in the other layers. Unit 4 had similar mineral composition and chemical properties to Unit 3, but had a higher content of plagioclase and chlorite and lower content of kaolin minerals. The chemical compositions of the sections were compared with those in other regions of Korea, suggesting the eolian origin of Units 3 and 4. The paleoenvironmental change in the sedimentary section of this region was interpreted as follows. Weathered products of gneiss and granite, which are bedrocks of this region, were eroded and deposited as sandy sediments in the periphery to form the lower layers (Unit 1, 2), followed by the deposition of the claysilty rich eolian sediments (Unit 3) during the glacial. Unit 3 was chemically weathered during the warm humid climate during the last interglacial, developing a reddish brown color. After that, a eolian sediment layer (Unit 4) was deposited during the last glacial.

A Study on the Sorption Characteristics of Polycyclic Aromatic Hydro-carbons(PAHs) and Cadmium by Organoclays (유기점토에 의한 다환방향족 탄화수소와 카드뮴의 흡착특성 연구)

  • Seung Yeop Lee;Soo Jin Kim
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.171-176
    • /
    • 2003
  • The fate and behavior of polycyclic aromatic hydrocarbons(PAHs) and heavy metals in the environment are mainly controlled by their interactions with various components of soils and sediments. Due to their large surface area and abundance in many soils, smectites may greatly influence the fate and transport of the contaminants. In our experiment, PAH sorption by hexadecyltimethylammonium(HDTMA)-modified smectite linearly increased in proportion to the amount of HDTMA added on the clay. However, trimethylammonium(TMA)-modified smectite did not show superiority in its sorption of PAH compared with the HDTMA-smectite or dodecyltrimethylammonium(DTMA)- smectite. Meanwhile, the smectites modified with the same cationic surfactants adsorbed Cd$^{2+}$(heavy metal) significantly from water at low surfactant loading level, but the Cd$^{2+}$ adsorption linearly decreased as the loading of surfactant increased. The result shows that the sorption tendency of organoclays for organic or inorganic contaminants was significantly influenced by the amount and size of the surfactants added on the clay. This reveals that the stabilization and configuration of cationic surfactant formed on the clay interlayer of different sizes may be an important factor in controlling the sorptive capacity of each pollutant in the environment.

Unfrozen Water Content and Unconfined Compressive Strength of Frozen Soils according to Degree of Saturations and Silt Fractions (포화도와 실트 함량에 따른 동결토의 부동 수분량 및 일축압축강도 특성)

  • Kim, Sang Yeob;Hong, Won-Taek;Hong, Seung Seo;Baek, Yong;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.12
    • /
    • pp.59-67
    • /
    • 2016
  • The strength of frozen soils is affected by size and shape of particles, and the amount of ice and unfrozen water. The objective of this study is to characterize the unfrozen water content and the unconfined compressive strength of the frozen soils according to the degree of saturations and silt fractions. The specimens are mixtures of sand, silt, and water. The silt fractions (SF), which are the ratio of the silt weight ($W_{silt}$) to the sand weight ($W_{sand}$), are 10% and 30%. In addition, the degrees of the saturation are 5%, 10%, 15%, and 20%. The specimens are frozen under the temperature of $-10^{\circ}C$ conditions. The uniaxial compression tests are conducted for 24 hours, 48 hours, and 72 hours after freezing to determine proper freezing time. The freezing time of 24 hours is chosen because the unconfined compressive strengths of specimens after 24 hours freezing times are similar to each other. Furthermore, the unfrozen water content is monitored during freezing using the TDR system. The unfrozen water content increases with the increase of the silt fraction and degree of saturation. The unconfined compressive strength of the frozen soils exponentially increases with increasing the degree of saturation. This study shows that the amount of ice has more influence on the strength of the frozen soils than the amount of unfrozen water.

Pullout Characteristics of Geogrid with Attached Passive Reinforcement (마찰돌기를 부착한 지오그리드의 인발특성 평가)

  • Moon, Hongduk;Yoo, Chulho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.11
    • /
    • pp.43-51
    • /
    • 2014
  • In this study, a series of pullout experiments were conducted on geogrid with attached passive reinforcement with respect to silt containments. Experiments were performed on man-made sand ground containing different silt of 0 %, 17 %, 35 % under various normal stresses 30 kPa, 60 kPa, 120 kPa respectively. The pullout test results showed that passive reinforcement increased the pullout strength over all silt contained condition and showed up to 20 % increases for same soil condition. The test results converted to the coefficient of interaction of pullout test to investigate the effect of reinforcement and the case of passive reinforcement showed 0.7~1.6 distribution depend on a silt contents. Therefore it is concluded that the overall length of geogrid can be reduced under the low vertical stress conditions.

Evaluation of CPTU Cone Factor of Silty Soil with Low Plasticity Focusing on Undrained Shear Strength Characteristics (저소성 실트지반의 비배수 전단강도 특성을 고려한 CPTU 콘계수 평가)

  • Kim, Ju-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.1
    • /
    • pp.73-83
    • /
    • 2017
  • Laboratory and in-situ tests were conducted to evaluate the cone factors for the layers with low plasticity containing a lot of silty and sand soils from the west coast (Incheon, Hwaseong and Gunsan areas) and its applicability was evaluated based on these results. The cone factors were evaluated from 19 to 23 based on unconfined compression strengths (qu), from 13 to 13.8 based on simple CU strengths and from 11.6 to 13.1 based on field vane strengths, respectively. The unconfined compression strengths of undisturbed silty soil samples with low plasticity were considerably underestimated due to the change of in-situ residual effective stress during sampling. Half of unconfined compression strength (qu/2) based cone factors of silty soils with low plasticity fluctuated and were approximately 1.8 times higher than simple CU based values of these soils. When evaluating cone factors of these soils, it should be judged overall on the physical properties such as the grain size distribution and soil plasticity and on the fluctuation of the corrected cone resistance and the sleeve friction due to the distribution of sandseam in the ground including pore pressure parameter.

Evaluation on Partially Drained Strength of Silty Soil With Low Plasticity Using CPTU Data (CPTU 데이터를 이용한 저소성 실트 지반의 부분배수 강도 평가)

  • Kim, Ju-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.55-66
    • /
    • 2017
  • The standard piezocone penetration rate of 2 cm/s is proposed in specifications regardless of soil type. However, conditions of standard Piezo Cone Penetration (CPTU) Testings in silty soils with low plasticity vary from undrained to partially drained or fully drained penetration conditions. The partially drained shear strengths of Incheon, Hwaseong and Gunsan silty soils were estimated from the analysis results of the distributions of CPTU-based shear strengths. The CPTU-based shear strengths were compared between the undrained shear strength line and the fully drained shear strength line, which were determined from approximately ${\varphi}^{\prime}=3^{\circ}$ and ${\varphi}^{\prime}=15^{\circ}$, respectively. The internal friction angles obtained from the back analysis and UU-tests tended to increase with decreasing plasticity index, which range approximately from ${\varphi}^{\prime}=2^{\circ}$ to ${\varphi}^{\prime}=14^{\circ}$. The results matchs well with CPTU-based estimation results.

IP Characteristics of Sand and Silt for Investigating the Alluvium Aquifer (충적대수층 조사를 위한 모래와 점토의 유도분극 특성 고찰)

  • Choi, Sang-Hyuk;Kim, Hyoung-Soo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.423-431
    • /
    • 2008
  • In general, water-saturated silt or clay alluvium is characterized with relatively low-resistivity. Thus we often encountered the problem that such a low-resistivity layer is misguided to be good aquifer of high-permeability and low-resistivity in the development of groundwater. This research was conducted with an emphasis on the identification of saturated silt or clay layer from the aquifer by performing the laboratory experiment of IP and resistivity methods on the various materials consisting of alluvium aquifer. Silt or clay layer is found to be characterized with the higher chargeability zone, compared to the sand layer. Regarding the mixture of sand and clay, the higher clay volume, the lower resistivity and the higher chargeability. Subsequently chargeability decreases.