• Title/Summary/Keyword: 실제 대류권 습윤 지연

Search Result 3, Processing Time 0.016 seconds

GPS water vapor estimation modeling with high accuracy by consideration of seasonal characteristics on Korea (한국의 계절별 특성을 고려한 고정확도 GPS 수증기 추정 모델링)

  • Song, Dong-Seob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.565-574
    • /
    • 2009
  • The water vapor weighted vertically mean temperature(Tm) models, which were developed by the consideration of seasonal characteristics over the Korea, was used in the retrieval of precipitable water vapor (PWV) from GPS data which were observed at four GPS permanent stations. Since the weighted mean temperature relates to the water vapor pressure and temperature profile at a site, the accuracy of water vapor information which were estimated from GPS tropospheric wet delay is proportional to the accuracy of the weighted mean temperature. The adaption of Korean seasonal weighted mean temperature model, as an alternative to other formulae which are suggested from other nation, provides an improvement in the accuracy of the GPS PWV estimation. Therefore, it can be concluded that the seasonally appropriate weighted mean temperature model, which is used to convert actual zenith wet delay (ZWD) to the PWV, can be more reduced the relative biases of PWV estimated from GPS signal delays in the troposphere than other annual model, so that it would be useful for GPS PWV estimation with high accuracy.

Improvement of GPS PWV retrieval capability using the reverse sea level corrections of air-pressure (기압의 역해면 경정 보정을 이용한 GPS PWV 복원 능력 개선)

  • Song, Dong-Seob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.535-544
    • /
    • 2009
  • Signals from the Global Positioning System(GPS) satellite are used to retrieve the integrated amount of water vapor or the precipitable water vapor(PWV) along the path between a transmitting satellite and ground-based receiver. In order to retrieve the PWV from GPS signal delay in the troposphere, the actual zenith wet delay, which can be derived by extracting the zenith total delay and subtracting the actual zenith hydrostatic delay computed using surface pressure observing, will be needed. Since it has been not co-located between GPS permanent station and automated weather station, the air-pressure on the mean sea level has been used to determine the actual zenith hydrostatic delay. The directly use of this air-pressure has been caused the dilution of precision on GPS PWV retrieval. In this study, Korean reverse sea level correction method of air-pressure was suggested for the improving of GPS PWV retrieval capability and the accuracy of water vapor estimated by GPS was evaluated through a comparison with radiosonde PWV.

GPS PWV Variation Research During the Progress of a Typhoon RUSA (태풍 RUSA의 진행에 따른 GPS PWV 변화량 연구)

  • 송동섭;윤홍식;서애숙
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.1
    • /
    • pp.9-17
    • /
    • 2003
  • Typhoon RUSA, which caused serious damage was passed over in Korea peninsula during 30 August to 1 September, 2002. We estimated tropospheric wet delay using GPS data and meteorological data during this period. Integrated Water Vapor(IWV) gives the total amount of water vapor from tropospheric wet delay and Precipitable Water Vapor(PWV) is calculated the IWV scaled by the density of water. We obtained GPS PWV at 13th GPS permanent stations(Seoul, Wonju. Seosan, Sangju, Junju, Cheongju, Taegu, Wuljin, Jinju, Daejeon, Mokpo, Sokcho, Jeju). We retrieve GPS data hourly and use Gipsy-Oasis II software and we compare PWV and precipitation. GPS observed PWV time series demonstrate that PWV is, in general, high before and during the occurrence of the typhoon RUSA, and low after the typhoon RUSA. GPS PWV peak time at each station is related to the progress of a typhoon RUSA. We got very near result as we compare GMS Satellite image with tomograph using GPS PWV and we could present practical use possibility by numerical model for weather forecast.