• Title/Summary/Keyword: 실제운송인

Search Result 213, Processing Time 0.019 seconds

A Study on the Effect of On-Dock System in Container Terminals - Focusing on GwangYang Port - (컨테이너터미널에서 On-Dock 시스템 효과분석에 관한 연구 - 광양항을 중심으로 -)

  • Cha, Sang-Hyun;Noh, Chang-Kyun
    • Journal of Navigation and Port Research
    • /
    • v.39 no.1
    • /
    • pp.45-53
    • /
    • 2015
  • These days Container Terminals are focusing on increasing the quantity of containers and shipping lines choose Terminals by referring to the key elements of a terminal to perform the overall operation the fastest such as the location of the terminal, discharging ability, keeping environment, and other elements related to shipping in general. Container terminal is able to offer On-Dock service has become an important factor for shipping lines to choose that terminal. In this paper, we propose an algorithm for On-Dock system work algorithm, the algorithm Empty container exports, Full Container algorithm and The aim of our study focus on both container's gate out time and search for the effective terminal operation which is using the general On-Dock system through several algorithm like container batch priority, gate in and out job priority and empty container yard equipment allocation rule based on the automatic allocation method and manual allocation scheme for container. Gathering these information, it gives the priority and yard location of gate-out containers to control. That is, by selecting an optimum algorithm container, container terminals Empty reduces the container taken out time, it is possible to minimize unnecessary re-handling of the yard container can be enhanced with respect to the efficiency of the equipment. Operations and operating results of the Non On-Dock and On-Dock system is operated by the out work operations (scenarios) forms that are operating in the real Gwangyang Container Terminal derived results. Gwangyang Container terminal and apply the On-Dock system, Non On-Dock can be taken out this time, about 5 minutes more quickly when applying the system. when managing export orders for berths where On-Dock service is needed, ball containers are allocated and for import cargoes, D/O is managed and after carryout, return management, container damage, cleaning, fixing and controlling services are supported hence the berth service can be strengthened and container terminal business can grow.

A Study on the Reliability Analysis and Risk Assessment of Liquefied Natural Gas Supply Utilities (천연가스 공급설비에 대한 기기신뢰도 분석 및 위험성 평가)

  • Ko, Jae-Sun;Kim, Hyo
    • Fire Science and Engineering
    • /
    • v.17 no.1
    • /
    • pp.8-20
    • /
    • 2003
  • Natural gas has been supplied through underground pipelines and valve stations as a new city gas in Seoul. In contrast to its handiness the natural gas has very substantial hazards due to fires and explosions occurring from careless treatments or malfunctions of the transporting system. The main objectives of this study are to identify major hazards and to perform risk assessments after assessing reliabilities of the composing units in dealing with typical pipeline networks. there-fore two method, fault tree analysis ;1nd event tree analysis, are used here. Random valve stations are selected and considered its situation in location. The value of small leakage, large rupture, and no supply of liquefied natural gas is estimated as that of top event. By this calculation the values of small leakage are 3.29 in I)C valve station, 1.41 in DS valve station, those of large rup-lure are $1.90Times10_{-2}$ in DC valve station, $2.32$\times$10^{-2}$ in DS valve station, and those of no supply of LNG to civil gas company are $2.33$\times$10 ^{-2}$ , $2.89$\times$10^{-2}$ in each valve station. And through minimal cut set we can find the parts that is important and should be more important in overall system. In DC valve station one line must be added between basic event 26,27 because the potential hazard of these parts is the highest value. If it is added the failure rate of no supply of LNG is reduced to one fourth. In DS valve station the failure rate of basic event 4 is 92eye of no supply of LNG. Therefore if the portion of this part is reduced (one line added) the total failure rate can be decreased to one tenth. This analytical study on the risk assessment is very useful to prepare emergency actions or procedures in case of gas accidents around underground pipeline networks and to establish a resolute gas safety management system for loss prevention in Seoul metropolitan area.

Current State for Temperature Management of Cold and Frozen Food Transportation Vehicles in Jeonbuk Province (전북권내 냉장·냉동식품 유통차량 온도관리 현황)

  • Park, Myoung-Su;Bahk, Gyung-Jin
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.2
    • /
    • pp.107-113
    • /
    • 2017
  • To understand of the present state for temperature management of cold and frozen food transportation vehicles, we surveyed and measured the temperatures of eight transportation vehicles (including 3 small & medium and 5 large businesses) in Jeonbuk province, Korea. In the transportation vehicles of small & medium businesses, the mean temperature of cold and frozen foods was $8.35{\pm}5.72^{\circ}C$ and $-3.45{\pm}16.88^{\circ}C$; in large businesses, $3.92{\pm}1.44^{\circ}C$ and $-15.38{\pm}2.98^{\circ}C$, respectively. In the difference of temperature by the locations within transportation vehicles, the difference in each cold and frozen was $2.40{\pm}1.45^{\circ}C$ and $2.37{\pm}2.52^{\circ}C$, as a mean. But there was not statistically significant difference in locations between cold and frozen (p > 0.05). In the difference of surface temperatures on various foods before and after door opening during the loading, the temperatures of cold and frozen foods increased by $0.55^{\circ}C$ and $1.18^{\circ}C$, as means, respectively. The temperature of foods over time and placement of cold and frozen foods in transportation vehicles were not consistently maintained at optimal values in distribution. Therefore, the development of time-temperature history (TTH) system technology at the distribution level for cold and frozen foods is required.