• Title/Summary/Keyword: 실시간 질량추정

Search Result 7, Processing Time 0.022 seconds

Real-Time Vehicle Mass Estimator for Active Rollover Prevention Systems (차량 전복 방지 장치를 위한 실시간 차량 질량 추정 시스템)

  • Han, Kwang-Jin;Kim, In-Keun;Kim, Seung-Ki;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.673-679
    • /
    • 2012
  • Vehicle rollover is a serious kind of accident, particularly for sport utility vehicles, and its occurrence can be minimized by utilizing active rollover prevention systems. The performance of these protection systems is very sensitive to vehicle inertial parameters such as the vehicle's mass and center of mass. These parameters vary with the number of passengers and in different load situations. In this paper, a unified method for vehicle mass estimation is proposed that takes into account the available driving conditions. Three estimation algorithms are developed based on longitudinal, lateral, and vertical vehicle motion, respectively. Then, the three algorithms are combined to extract information on the vehicle's mass during arbitrary vehicle maneuvering. The performance of the proposed vehicle mass estimation method is demonstrated through real-time experiments.

Caculating Ship Rudder Angle and Real-Time Mass Estimator Under Dynamic State (동적 상태의 선박 조향각 및 실시간 질량 추정 시스템)

  • Jin–hyuk Myung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.31-32
    • /
    • 2022
  • In Early vessels did not provide an exact equation for preventig the capsizing vessels. On land, many vehicle rollover prevention technologies using the steady-state Conrning Equations were developed, which showed better performance than the exiting method at sea. For better performance, It is proposed to improve safety mangement when turning vessel using the Ackerman geometic model-based Cornering Equations in this paper.

  • PDF

Real-Time Estimation of Yaw Moment of Inertia of a Travelling Heavy Duty Truck (주행하는 대형 트럭의 요관성모멘트 실시간 추정)

  • Lee, Seung-Yong;Nakano, Kimihiko;Kim, Se-Kwang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.205-211
    • /
    • 2017
  • To achieve an advanced control of automobiles, it is necessary to acquire the values of the parameters of a vehicle in real time to conduct precise vehicle control practices such as automatic platooning control. Vehicle control is especially required in controlling trucks, as the mass and inertia change widely according to the loading conditions. Thereafter, we propose to estimate the yaw moment of inertia of the truck in real-time during travelling, by applying the dual Kalman filter algorithm, which estimates the state variables and values of the parameters simultaneously in real-time. The simulation results show that the proposed method is effective for the estimation, which uses commercial software for simulating and analyzing the vehicle dynamics.

A Study on Real-Time Inertia Estimation Method for STSAT-3 (과학기술위성 3호 실시간 관성모멘트 추정 기법 연구)

  • Kim, Kwangjin;Lee, Sangchul;Oh, Hwa-Suk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.4
    • /
    • pp.1-6
    • /
    • 2012
  • The accurate information of mass properties is required for the precise control of the spacecraft. The mass properties, mass and inertia, are changeable by some reasons such as consumption of propellant, deployment of solar panel, sloshing, environmental effect, etc. The gyro-based attitude data including noise and bias reduces the control accuracy so it needs to be compensated for improvement. This paper introduces a real-time inertia estimation method for the attitude determination of STSAT-3, Korea Science Technology Satellite. In this method we first filter the gyro noise with the Extended Kalman Filter(EKF), and then estimate the moment of inertia by using the filtered data from the EKF based on the Recursive Least Square(RLS).

Implementation of Intelligent Image Surveillance System based Context (컨텍스트 기반의 지능형 영상 감시 시스템 구현에 관한 연구)

  • Moon, Sung-Ryong;Shin, Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.3
    • /
    • pp.11-22
    • /
    • 2010
  • This paper is a study on implementation of intelligent image surveillance system using context information and supplements temporal-spatial constraint, the weak point in which it is hard to process it in real time. In this paper, we propose scene analysis algorithm which can be processed in real time in various environments at low resolution video(320*240) comprised of 30 frames per second. The proposed algorithm gets rid of background and meaningless frame among continuous frames. And, this paper uses wavelet transform and edge histogram to detect shot boundary. Next, representative key-frame in shot boundary is selected by key-frame selection parameter and edge histogram, mathematical morphology are used to detect only motion region. We define each four basic contexts in accordance with angles of feature points by applying vertical and horizontal ratio for the motion region of detected object. These are standing, laying, seating and walking. Finally, we carry out scene analysis by defining simple context model composed with general context and emergency context through estimating each context's connection status and configure a system in order to check real time processing possibility. The proposed system shows the performance of 92.5% in terms of recognition rate for a video of low resolution and processing speed is 0.74 second in average per frame, so that we can check real time processing is possible.

The Development of Interactive Ski-Simulation Motion Recognition System by Physics-Based Analysis (물리 모델 분석을 통한 상호 작용형 스키시뮬레이터 동작인식 시스템 개발)

  • Jin, Moon-Sub;Choi, Chun-Ho;Chung, Kyung-Ryul
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.205-210
    • /
    • 2013
  • In this research, we have developed a ski-simulation system based on a physics-based simulation model using Newton's second law of motion. Key parameters of the model, which estimates skier's trajectory, speed and acceleration change due to skier's control on ski plate and posture changes, were derived from a field test study performed on real ski slope. Skier's posture and motion were measured by motion capture system composed of 13 high speed IR camera, and skier's control and pressure distribution on ski plate were measured by acceleration and pressure sensors attached on ski plate and ski boots. Developed ski-simulation model analyzes user's full body and center of mass using a depth camera(Microsoft Kinect) device in real time and provides feedback about force, velocity and acceleration for user. As a result, through the development of interactive ski-simulation motion recognition system, we accumulated experience and skills based on physics models for development of sports simulator.

LC-MS/MS Screening Method for Radical Scavenging Active Compounds in Extracts of Ulmus pumila Cortex (유근피 추출물의 radical 소거 활성 성분에 대한 LC-MS/MS 스크리닝 분석법)

  • Im, Do-Youn;Lee, Kyoung-In
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.956-964
    • /
    • 2020
  • The radical scavenging activity measurement system linked with liquid chromatography (LC) is a useful tool for identifying the radical scavenging active compound in a sample composed of numerous compounds such as plant extracts. Using this system, DPPH and ABTS radical scavenging activity were measured on extracts of Ulmus pumila cortex, which is known as an herbal medicine with antioxidant activity. Mass spectrometry (MS) was performed on the identified radical scavenging active compounds to identify the four components estimated to be procyanidin B2, procyanidin B3, catechin-7-O-β-D-apiofuranoside, and catechin-5-O-β-D-apiofuranoside, respectively. In order to compare the relative contents between extract samples, multiple reaction monitoring (MRM) mode analysis conditions were set for the four compounds in order to examine the possibility of comparing the content of radical scavenging active compounds in Ulmus pumila cortex extract using LC-MS/MS. As a result of the relative content comparison, it was found that the higher the ethanol concentration of the extraction solvent, the higher the content of radical scavenging active compounds. As with the results of measuring the radical scavenging activity of each extract, it was confirmed that the content difference of three of the compounds (all except the compound estimated as procyanidin B3) was not significantly observed in the extracts with an ethanol concentration of 50% or more.